Step |
Hyp |
Ref |
Expression |
1 |
|
dchrabs2.g |
⊢ 𝐺 = ( DChr ‘ 𝑁 ) |
2 |
|
dchrabs2.d |
⊢ 𝐷 = ( Base ‘ 𝐺 ) |
3 |
|
dchrabs2.z |
⊢ 𝑍 = ( ℤ/nℤ ‘ 𝑁 ) |
4 |
|
dchrabs2.b |
⊢ 𝐵 = ( Base ‘ 𝑍 ) |
5 |
|
dchrabs2.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐷 ) |
6 |
|
dchrabs2.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝐵 ) |
7 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( 𝑋 ‘ 𝐴 ) = 0 ) → ( 𝑋 ‘ 𝐴 ) = 0 ) |
8 |
7
|
abs00bd |
⊢ ( ( 𝜑 ∧ ( 𝑋 ‘ 𝐴 ) = 0 ) → ( abs ‘ ( 𝑋 ‘ 𝐴 ) ) = 0 ) |
9 |
|
0le1 |
⊢ 0 ≤ 1 |
10 |
8 9
|
eqbrtrdi |
⊢ ( ( 𝜑 ∧ ( 𝑋 ‘ 𝐴 ) = 0 ) → ( abs ‘ ( 𝑋 ‘ 𝐴 ) ) ≤ 1 ) |
11 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑋 ‘ 𝐴 ) ≠ 0 ) → 𝑋 ∈ 𝐷 ) |
12 |
|
eqid |
⊢ ( Unit ‘ 𝑍 ) = ( Unit ‘ 𝑍 ) |
13 |
1 3 2 4 12 5 6
|
dchrn0 |
⊢ ( 𝜑 → ( ( 𝑋 ‘ 𝐴 ) ≠ 0 ↔ 𝐴 ∈ ( Unit ‘ 𝑍 ) ) ) |
14 |
13
|
biimpa |
⊢ ( ( 𝜑 ∧ ( 𝑋 ‘ 𝐴 ) ≠ 0 ) → 𝐴 ∈ ( Unit ‘ 𝑍 ) ) |
15 |
1 2 11 3 12 14
|
dchrabs |
⊢ ( ( 𝜑 ∧ ( 𝑋 ‘ 𝐴 ) ≠ 0 ) → ( abs ‘ ( 𝑋 ‘ 𝐴 ) ) = 1 ) |
16 |
|
1le1 |
⊢ 1 ≤ 1 |
17 |
15 16
|
eqbrtrdi |
⊢ ( ( 𝜑 ∧ ( 𝑋 ‘ 𝐴 ) ≠ 0 ) → ( abs ‘ ( 𝑋 ‘ 𝐴 ) ) ≤ 1 ) |
18 |
10 17
|
pm2.61dane |
⊢ ( 𝜑 → ( abs ‘ ( 𝑋 ‘ 𝐴 ) ) ≤ 1 ) |