| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dchrmhm.g |
⊢ 𝐺 = ( DChr ‘ 𝑁 ) |
| 2 |
|
dchrmhm.z |
⊢ 𝑍 = ( ℤ/nℤ ‘ 𝑁 ) |
| 3 |
|
dchrmhm.b |
⊢ 𝐷 = ( Base ‘ 𝐺 ) |
| 4 |
|
dchrn0.b |
⊢ 𝐵 = ( Base ‘ 𝑍 ) |
| 5 |
|
dchrn0.u |
⊢ 𝑈 = ( Unit ‘ 𝑍 ) |
| 6 |
|
dchrn0.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐷 ) |
| 7 |
|
dchrn0.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝐵 ) |
| 8 |
|
fveq2 |
⊢ ( 𝑥 = 𝐴 → ( 𝑋 ‘ 𝑥 ) = ( 𝑋 ‘ 𝐴 ) ) |
| 9 |
8
|
neeq1d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑋 ‘ 𝑥 ) ≠ 0 ↔ ( 𝑋 ‘ 𝐴 ) ≠ 0 ) ) |
| 10 |
|
eleq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 ∈ 𝑈 ↔ 𝐴 ∈ 𝑈 ) ) |
| 11 |
9 10
|
imbi12d |
⊢ ( 𝑥 = 𝐴 → ( ( ( 𝑋 ‘ 𝑥 ) ≠ 0 → 𝑥 ∈ 𝑈 ) ↔ ( ( 𝑋 ‘ 𝐴 ) ≠ 0 → 𝐴 ∈ 𝑈 ) ) ) |
| 12 |
1 3
|
dchrrcl |
⊢ ( 𝑋 ∈ 𝐷 → 𝑁 ∈ ℕ ) |
| 13 |
6 12
|
syl |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
| 14 |
1 2 4 5 13 3
|
dchrelbas2 |
⊢ ( 𝜑 → ( 𝑋 ∈ 𝐷 ↔ ( 𝑋 ∈ ( ( mulGrp ‘ 𝑍 ) MndHom ( mulGrp ‘ ℂfld ) ) ∧ ∀ 𝑥 ∈ 𝐵 ( ( 𝑋 ‘ 𝑥 ) ≠ 0 → 𝑥 ∈ 𝑈 ) ) ) ) |
| 15 |
6 14
|
mpbid |
⊢ ( 𝜑 → ( 𝑋 ∈ ( ( mulGrp ‘ 𝑍 ) MndHom ( mulGrp ‘ ℂfld ) ) ∧ ∀ 𝑥 ∈ 𝐵 ( ( 𝑋 ‘ 𝑥 ) ≠ 0 → 𝑥 ∈ 𝑈 ) ) ) |
| 16 |
15
|
simprd |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ( ( 𝑋 ‘ 𝑥 ) ≠ 0 → 𝑥 ∈ 𝑈 ) ) |
| 17 |
11 16 7
|
rspcdva |
⊢ ( 𝜑 → ( ( 𝑋 ‘ 𝐴 ) ≠ 0 → 𝐴 ∈ 𝑈 ) ) |
| 18 |
17
|
imp |
⊢ ( ( 𝜑 ∧ ( 𝑋 ‘ 𝐴 ) ≠ 0 ) → 𝐴 ∈ 𝑈 ) |
| 19 |
|
ax-1ne0 |
⊢ 1 ≠ 0 |
| 20 |
19
|
a1i |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝑈 ) → 1 ≠ 0 ) |
| 21 |
13
|
nnnn0d |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
| 22 |
2
|
zncrng |
⊢ ( 𝑁 ∈ ℕ0 → 𝑍 ∈ CRing ) |
| 23 |
|
crngring |
⊢ ( 𝑍 ∈ CRing → 𝑍 ∈ Ring ) |
| 24 |
21 22 23
|
3syl |
⊢ ( 𝜑 → 𝑍 ∈ Ring ) |
| 25 |
|
eqid |
⊢ ( invr ‘ 𝑍 ) = ( invr ‘ 𝑍 ) |
| 26 |
|
eqid |
⊢ ( .r ‘ 𝑍 ) = ( .r ‘ 𝑍 ) |
| 27 |
|
eqid |
⊢ ( 1r ‘ 𝑍 ) = ( 1r ‘ 𝑍 ) |
| 28 |
5 25 26 27
|
unitrinv |
⊢ ( ( 𝑍 ∈ Ring ∧ 𝐴 ∈ 𝑈 ) → ( 𝐴 ( .r ‘ 𝑍 ) ( ( invr ‘ 𝑍 ) ‘ 𝐴 ) ) = ( 1r ‘ 𝑍 ) ) |
| 29 |
24 28
|
sylan |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝑈 ) → ( 𝐴 ( .r ‘ 𝑍 ) ( ( invr ‘ 𝑍 ) ‘ 𝐴 ) ) = ( 1r ‘ 𝑍 ) ) |
| 30 |
29
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝑈 ) → ( 𝑋 ‘ ( 𝐴 ( .r ‘ 𝑍 ) ( ( invr ‘ 𝑍 ) ‘ 𝐴 ) ) ) = ( 𝑋 ‘ ( 1r ‘ 𝑍 ) ) ) |
| 31 |
15
|
simpld |
⊢ ( 𝜑 → 𝑋 ∈ ( ( mulGrp ‘ 𝑍 ) MndHom ( mulGrp ‘ ℂfld ) ) ) |
| 32 |
31
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝑈 ) → 𝑋 ∈ ( ( mulGrp ‘ 𝑍 ) MndHom ( mulGrp ‘ ℂfld ) ) ) |
| 33 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝑈 ) → 𝐴 ∈ 𝐵 ) |
| 34 |
5 25 4
|
ringinvcl |
⊢ ( ( 𝑍 ∈ Ring ∧ 𝐴 ∈ 𝑈 ) → ( ( invr ‘ 𝑍 ) ‘ 𝐴 ) ∈ 𝐵 ) |
| 35 |
24 34
|
sylan |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝑈 ) → ( ( invr ‘ 𝑍 ) ‘ 𝐴 ) ∈ 𝐵 ) |
| 36 |
|
eqid |
⊢ ( mulGrp ‘ 𝑍 ) = ( mulGrp ‘ 𝑍 ) |
| 37 |
36 4
|
mgpbas |
⊢ 𝐵 = ( Base ‘ ( mulGrp ‘ 𝑍 ) ) |
| 38 |
36 26
|
mgpplusg |
⊢ ( .r ‘ 𝑍 ) = ( +g ‘ ( mulGrp ‘ 𝑍 ) ) |
| 39 |
|
eqid |
⊢ ( mulGrp ‘ ℂfld ) = ( mulGrp ‘ ℂfld ) |
| 40 |
|
cnfldmul |
⊢ · = ( .r ‘ ℂfld ) |
| 41 |
39 40
|
mgpplusg |
⊢ · = ( +g ‘ ( mulGrp ‘ ℂfld ) ) |
| 42 |
37 38 41
|
mhmlin |
⊢ ( ( 𝑋 ∈ ( ( mulGrp ‘ 𝑍 ) MndHom ( mulGrp ‘ ℂfld ) ) ∧ 𝐴 ∈ 𝐵 ∧ ( ( invr ‘ 𝑍 ) ‘ 𝐴 ) ∈ 𝐵 ) → ( 𝑋 ‘ ( 𝐴 ( .r ‘ 𝑍 ) ( ( invr ‘ 𝑍 ) ‘ 𝐴 ) ) ) = ( ( 𝑋 ‘ 𝐴 ) · ( 𝑋 ‘ ( ( invr ‘ 𝑍 ) ‘ 𝐴 ) ) ) ) |
| 43 |
32 33 35 42
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝑈 ) → ( 𝑋 ‘ ( 𝐴 ( .r ‘ 𝑍 ) ( ( invr ‘ 𝑍 ) ‘ 𝐴 ) ) ) = ( ( 𝑋 ‘ 𝐴 ) · ( 𝑋 ‘ ( ( invr ‘ 𝑍 ) ‘ 𝐴 ) ) ) ) |
| 44 |
36 27
|
ringidval |
⊢ ( 1r ‘ 𝑍 ) = ( 0g ‘ ( mulGrp ‘ 𝑍 ) ) |
| 45 |
|
cnfld1 |
⊢ 1 = ( 1r ‘ ℂfld ) |
| 46 |
39 45
|
ringidval |
⊢ 1 = ( 0g ‘ ( mulGrp ‘ ℂfld ) ) |
| 47 |
44 46
|
mhm0 |
⊢ ( 𝑋 ∈ ( ( mulGrp ‘ 𝑍 ) MndHom ( mulGrp ‘ ℂfld ) ) → ( 𝑋 ‘ ( 1r ‘ 𝑍 ) ) = 1 ) |
| 48 |
32 47
|
syl |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝑈 ) → ( 𝑋 ‘ ( 1r ‘ 𝑍 ) ) = 1 ) |
| 49 |
30 43 48
|
3eqtr3d |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝑈 ) → ( ( 𝑋 ‘ 𝐴 ) · ( 𝑋 ‘ ( ( invr ‘ 𝑍 ) ‘ 𝐴 ) ) ) = 1 ) |
| 50 |
|
cnfldbas |
⊢ ℂ = ( Base ‘ ℂfld ) |
| 51 |
39 50
|
mgpbas |
⊢ ℂ = ( Base ‘ ( mulGrp ‘ ℂfld ) ) |
| 52 |
37 51
|
mhmf |
⊢ ( 𝑋 ∈ ( ( mulGrp ‘ 𝑍 ) MndHom ( mulGrp ‘ ℂfld ) ) → 𝑋 : 𝐵 ⟶ ℂ ) |
| 53 |
32 52
|
syl |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝑈 ) → 𝑋 : 𝐵 ⟶ ℂ ) |
| 54 |
53 35
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝑈 ) → ( 𝑋 ‘ ( ( invr ‘ 𝑍 ) ‘ 𝐴 ) ) ∈ ℂ ) |
| 55 |
54
|
mul02d |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝑈 ) → ( 0 · ( 𝑋 ‘ ( ( invr ‘ 𝑍 ) ‘ 𝐴 ) ) ) = 0 ) |
| 56 |
20 49 55
|
3netr4d |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝑈 ) → ( ( 𝑋 ‘ 𝐴 ) · ( 𝑋 ‘ ( ( invr ‘ 𝑍 ) ‘ 𝐴 ) ) ) ≠ ( 0 · ( 𝑋 ‘ ( ( invr ‘ 𝑍 ) ‘ 𝐴 ) ) ) ) |
| 57 |
|
oveq1 |
⊢ ( ( 𝑋 ‘ 𝐴 ) = 0 → ( ( 𝑋 ‘ 𝐴 ) · ( 𝑋 ‘ ( ( invr ‘ 𝑍 ) ‘ 𝐴 ) ) ) = ( 0 · ( 𝑋 ‘ ( ( invr ‘ 𝑍 ) ‘ 𝐴 ) ) ) ) |
| 58 |
57
|
necon3i |
⊢ ( ( ( 𝑋 ‘ 𝐴 ) · ( 𝑋 ‘ ( ( invr ‘ 𝑍 ) ‘ 𝐴 ) ) ) ≠ ( 0 · ( 𝑋 ‘ ( ( invr ‘ 𝑍 ) ‘ 𝐴 ) ) ) → ( 𝑋 ‘ 𝐴 ) ≠ 0 ) |
| 59 |
56 58
|
syl |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝑈 ) → ( 𝑋 ‘ 𝐴 ) ≠ 0 ) |
| 60 |
18 59
|
impbida |
⊢ ( 𝜑 → ( ( 𝑋 ‘ 𝐴 ) ≠ 0 ↔ 𝐴 ∈ 𝑈 ) ) |