| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dchrmhm.g |
|
| 2 |
|
dchrmhm.z |
|
| 3 |
|
dchrmhm.b |
|
| 4 |
|
dchrn0.b |
|
| 5 |
|
dchrn0.u |
|
| 6 |
|
dchrn0.x |
|
| 7 |
|
dchrn0.a |
|
| 8 |
|
fveq2 |
|
| 9 |
8
|
neeq1d |
|
| 10 |
|
eleq1 |
|
| 11 |
9 10
|
imbi12d |
|
| 12 |
1 3
|
dchrrcl |
|
| 13 |
6 12
|
syl |
|
| 14 |
1 2 4 5 13 3
|
dchrelbas2 |
|
| 15 |
6 14
|
mpbid |
|
| 16 |
15
|
simprd |
|
| 17 |
11 16 7
|
rspcdva |
|
| 18 |
17
|
imp |
|
| 19 |
|
ax-1ne0 |
|
| 20 |
19
|
a1i |
|
| 21 |
13
|
nnnn0d |
|
| 22 |
2
|
zncrng |
|
| 23 |
|
crngring |
|
| 24 |
21 22 23
|
3syl |
|
| 25 |
|
eqid |
|
| 26 |
|
eqid |
|
| 27 |
|
eqid |
|
| 28 |
5 25 26 27
|
unitrinv |
|
| 29 |
24 28
|
sylan |
|
| 30 |
29
|
fveq2d |
|
| 31 |
15
|
simpld |
|
| 32 |
31
|
adantr |
|
| 33 |
7
|
adantr |
|
| 34 |
5 25 4
|
ringinvcl |
|
| 35 |
24 34
|
sylan |
|
| 36 |
|
eqid |
|
| 37 |
36 4
|
mgpbas |
|
| 38 |
36 26
|
mgpplusg |
|
| 39 |
|
eqid |
|
| 40 |
|
cnfldmul |
|
| 41 |
39 40
|
mgpplusg |
|
| 42 |
37 38 41
|
mhmlin |
|
| 43 |
32 33 35 42
|
syl3anc |
|
| 44 |
36 27
|
ringidval |
|
| 45 |
|
cnfld1 |
|
| 46 |
39 45
|
ringidval |
|
| 47 |
44 46
|
mhm0 |
|
| 48 |
32 47
|
syl |
|
| 49 |
30 43 48
|
3eqtr3d |
|
| 50 |
|
cnfldbas |
|
| 51 |
39 50
|
mgpbas |
|
| 52 |
37 51
|
mhmf |
|
| 53 |
32 52
|
syl |
|
| 54 |
53 35
|
ffvelcdmd |
|
| 55 |
54
|
mul02d |
|
| 56 |
20 49 55
|
3netr4d |
|
| 57 |
|
oveq1 |
|
| 58 |
57
|
necon3i |
|
| 59 |
56 58
|
syl |
|
| 60 |
18 59
|
impbida |
|