| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dchrval.g |
|
| 2 |
|
dchrval.z |
|
| 3 |
|
dchrval.b |
|
| 4 |
|
dchrval.u |
|
| 5 |
|
dchrval.n |
|
| 6 |
|
dchrbas.b |
|
| 7 |
1 2 3 4 5 6
|
dchrelbas |
|
| 8 |
|
eqid |
|
| 9 |
8 3
|
mgpbas |
|
| 10 |
|
eqid |
|
| 11 |
|
cnfldbas |
|
| 12 |
10 11
|
mgpbas |
|
| 13 |
9 12
|
mhmf |
|
| 14 |
13
|
adantl |
|
| 15 |
14
|
ffund |
|
| 16 |
|
funssres |
|
| 17 |
15 16
|
sylan |
|
| 18 |
|
simpr |
|
| 19 |
|
resss |
|
| 20 |
18 19
|
eqsstrrdi |
|
| 21 |
17 20
|
impbida |
|
| 22 |
|
0cn |
|
| 23 |
|
fconst6g |
|
| 24 |
22 23
|
mp1i |
|
| 25 |
24
|
fdmd |
|
| 26 |
25
|
reseq2d |
|
| 27 |
26
|
eqeq1d |
|
| 28 |
|
difss |
|
| 29 |
|
fssres |
|
| 30 |
14 28 29
|
sylancl |
|
| 31 |
30
|
ffnd |
|
| 32 |
24
|
ffnd |
|
| 33 |
|
eqfnfv |
|
| 34 |
31 32 33
|
syl2anc |
|
| 35 |
|
fvres |
|
| 36 |
|
c0ex |
|
| 37 |
36
|
fvconst2 |
|
| 38 |
35 37
|
eqeq12d |
|
| 39 |
38
|
ralbiia |
|
| 40 |
|
eldif |
|
| 41 |
40
|
imbi1i |
|
| 42 |
|
impexp |
|
| 43 |
|
con1b |
|
| 44 |
|
df-ne |
|
| 45 |
44
|
imbi1i |
|
| 46 |
43 45
|
bitr4i |
|
| 47 |
46
|
imbi2i |
|
| 48 |
41 42 47
|
3bitri |
|
| 49 |
48
|
ralbii2 |
|
| 50 |
39 49
|
bitri |
|
| 51 |
34 50
|
bitrdi |
|
| 52 |
21 27 51
|
3bitrd |
|
| 53 |
52
|
pm5.32da |
|
| 54 |
7 53
|
bitrd |
|