Metamath Proof Explorer


Theorem dchrelbas3

Description: A Dirichlet character is a monoid homomorphism from the multiplicative monoid on Z/nZ to the multiplicative monoid of CC , which is zero off the group of units of Z/nZ . (Contributed by Mario Carneiro, 19-Apr-2016)

Ref Expression
Hypotheses dchrval.g G=DChrN
dchrval.z Z=/N
dchrval.b B=BaseZ
dchrval.u U=UnitZ
dchrval.n φN
dchrbas.b D=BaseG
Assertion dchrelbas3 φXDX:BxUyUXxZy=XxXyX1Z=1xBXx0xU

Proof

Step Hyp Ref Expression
1 dchrval.g G=DChrN
2 dchrval.z Z=/N
3 dchrval.b B=BaseZ
4 dchrval.u U=UnitZ
5 dchrval.n φN
6 dchrbas.b D=BaseG
7 1 2 3 4 5 6 dchrelbas2 φXDXmulGrpZMndHommulGrpfldxBXx0xU
8 fveq2 z=xXz=Xx
9 8 neeq1d z=xXz0Xx0
10 eleq1 z=xzUxU
11 9 10 imbi12d z=xXz0zUXx0xU
12 11 cbvralvw zBXz0zUxBXx0xU
13 5 nnnn0d φN0
14 2 zncrng N0ZCRing
15 13 14 syl φZCRing
16 crngring ZCRingZRing
17 15 16 syl φZRing
18 eqid mulGrpZ=mulGrpZ
19 18 ringmgp ZRingmulGrpZMnd
20 17 19 syl φmulGrpZMnd
21 cnring fldRing
22 eqid mulGrpfld=mulGrpfld
23 22 ringmgp fldRingmulGrpfldMnd
24 21 23 ax-mp mulGrpfldMnd
25 18 3 mgpbas B=BasemulGrpZ
26 cnfldbas =Basefld
27 22 26 mgpbas =BasemulGrpfld
28 eqid Z=Z
29 18 28 mgpplusg Z=+mulGrpZ
30 cnfldmul ×=fld
31 22 30 mgpplusg ×=+mulGrpfld
32 eqid 1Z=1Z
33 18 32 ringidval 1Z=0mulGrpZ
34 cnfld1 1=1fld
35 22 34 ringidval 1=0mulGrpfld
36 25 27 29 31 33 35 ismhm XmulGrpZMndHommulGrpfldmulGrpZMndmulGrpfldMndX:BxByBXxZy=XxXyX1Z=1
37 36 baib mulGrpZMndmulGrpfldMndXmulGrpZMndHommulGrpfldX:BxByBXxZy=XxXyX1Z=1
38 20 24 37 sylancl φXmulGrpZMndHommulGrpfldX:BxByBXxZy=XxXyX1Z=1
39 38 adantr φzBXz0zUXmulGrpZMndHommulGrpfldX:BxByBXxZy=XxXyX1Z=1
40 biimt xUyUXxZy=XxXyxUyUXxZy=XxXy
41 40 adantl φzBXz0zUX:BxByBxUyUXxZy=XxXyxUyUXxZy=XxXy
42 fveq2 z=xZyXz=XxZy
43 42 neeq1d z=xZyXz0XxZy0
44 eleq1 z=xZyzUxZyU
45 43 44 imbi12d z=xZyXz0zUXxZy0xZyU
46 simpllr φzBXz0zUX:BxByBzBXz0zU
47 17 ad3antrrr φzBXz0zUX:BxByBZRing
48 simprl φzBXz0zUX:BxByBxB
49 simprr φzBXz0zUX:BxByByB
50 3 28 ringcl ZRingxByBxZyB
51 47 48 49 50 syl3anc φzBXz0zUX:BxByBxZyB
52 45 46 51 rspcdva φzBXz0zUX:BxByBXxZy0xZyU
53 15 ad3antrrr φzBXz0zUX:BxByBZCRing
54 4 28 3 unitmulclb ZCRingxByBxZyUxUyU
55 53 48 49 54 syl3anc φzBXz0zUX:BxByBxZyUxUyU
56 52 55 sylibd φzBXz0zUX:BxByBXxZy0xUyU
57 56 necon1bd φzBXz0zUX:BxByB¬xUyUXxZy=0
58 57 imp φzBXz0zUX:BxByB¬xUyUXxZy=0
59 11 46 48 rspcdva φzBXz0zUX:BxByBXx0xU
60 fveq2 z=yXz=Xy
61 60 neeq1d z=yXz0Xy0
62 eleq1 z=yzUyU
63 61 62 imbi12d z=yXz0zUXy0yU
64 63 46 49 rspcdva φzBXz0zUX:BxByBXy0yU
65 59 64 anim12d φzBXz0zUX:BxByBXx0Xy0xUyU
66 65 con3dimp φzBXz0zUX:BxByB¬xUyU¬Xx0Xy0
67 neanior Xx0Xy0¬Xx=0Xy=0
68 67 con2bii Xx=0Xy=0¬Xx0Xy0
69 66 68 sylibr φzBXz0zUX:BxByB¬xUyUXx=0Xy=0
70 simplr φzBXz0zUX:BxByBX:B
71 70 48 ffvelcdmd φzBXz0zUX:BxByBXx
72 70 49 ffvelcdmd φzBXz0zUX:BxByBXy
73 71 72 mul0ord φzBXz0zUX:BxByBXxXy=0Xx=0Xy=0
74 73 adantr φzBXz0zUX:BxByB¬xUyUXxXy=0Xx=0Xy=0
75 69 74 mpbird φzBXz0zUX:BxByB¬xUyUXxXy=0
76 58 75 eqtr4d φzBXz0zUX:BxByB¬xUyUXxZy=XxXy
77 76 a1d φzBXz0zUX:BxByB¬xUyUxUyUXxZy=XxXy
78 76 77 2thd φzBXz0zUX:BxByB¬xUyUXxZy=XxXyxUyUXxZy=XxXy
79 41 78 pm2.61dan φzBXz0zUX:BxByBXxZy=XxXyxUyUXxZy=XxXy
80 79 pm5.74da φzBXz0zUX:BxByBXxZy=XxXyxByBxUyUXxZy=XxXy
81 3 4 unitcl xUxB
82 3 4 unitcl yUyB
83 81 82 anim12i xUyUxByB
84 83 pm4.71ri xUyUxByBxUyU
85 84 imbi1i xUyUXxZy=XxXyxByBxUyUXxZy=XxXy
86 impexp xByBxUyUXxZy=XxXyxByBxUyUXxZy=XxXy
87 85 86 bitri xUyUXxZy=XxXyxByBxUyUXxZy=XxXy
88 80 87 bitr4di φzBXz0zUX:BxByBXxZy=XxXyxUyUXxZy=XxXy
89 88 2albidv φzBXz0zUX:BxyxByBXxZy=XxXyxyxUyUXxZy=XxXy
90 r2al xByBXxZy=XxXyxyxByBXxZy=XxXy
91 r2al xUyUXxZy=XxXyxyxUyUXxZy=XxXy
92 89 90 91 3bitr4g φzBXz0zUX:BxByBXxZy=XxXyxUyUXxZy=XxXy
93 92 adantrr φzBXz0zUX:BX1Z=1xByBXxZy=XxXyxUyUXxZy=XxXy
94 93 pm5.32da φzBXz0zUX:BX1Z=1xByBXxZy=XxXyX:BX1Z=1xUyUXxZy=XxXy
95 3anan32 X:BxByBXxZy=XxXyX1Z=1X:BX1Z=1xByBXxZy=XxXy
96 an31 xUyUXxZy=XxXyX1Z=1X:BX:BX1Z=1xUyUXxZy=XxXy
97 94 95 96 3bitr4g φzBXz0zUX:BxByBXxZy=XxXyX1Z=1xUyUXxZy=XxXyX1Z=1X:B
98 39 97 bitrd φzBXz0zUXmulGrpZMndHommulGrpfldxUyUXxZy=XxXyX1Z=1X:B
99 12 98 sylan2br φxBXx0xUXmulGrpZMndHommulGrpfldxUyUXxZy=XxXyX1Z=1X:B
100 99 pm5.32da φxBXx0xUXmulGrpZMndHommulGrpfldxBXx0xUxUyUXxZy=XxXyX1Z=1X:B
101 ancom XmulGrpZMndHommulGrpfldxBXx0xUxBXx0xUXmulGrpZMndHommulGrpfld
102 df-3an xUyUXxZy=XxXyX1Z=1xBXx0xUxUyUXxZy=XxXyX1Z=1xBXx0xU
103 102 anbi2i X:BxUyUXxZy=XxXyX1Z=1xBXx0xUX:BxUyUXxZy=XxXyX1Z=1xBXx0xU
104 an13 X:BxUyUXxZy=XxXyX1Z=1xBXx0xUxBXx0xUxUyUXxZy=XxXyX1Z=1X:B
105 103 104 bitri X:BxUyUXxZy=XxXyX1Z=1xBXx0xUxBXx0xUxUyUXxZy=XxXyX1Z=1X:B
106 100 101 105 3bitr4g φXmulGrpZMndHommulGrpfldxBXx0xUX:BxUyUXxZy=XxXyX1Z=1xBXx0xU
107 7 106 bitrd φXDX:BxUyUXxZy=XxXyX1Z=1xBXx0xU