Metamath Proof Explorer


Theorem dchrelbasd

Description: A Dirichlet character is a monoid homomorphism from the multiplicative monoid on Z/nZ to the multiplicative monoid of CC , which is zero off the group of units of Z/nZ . (Contributed by Mario Carneiro, 28-Apr-2016)

Ref Expression
Hypotheses dchrval.g G=DChrN
dchrval.z Z=/N
dchrval.b B=BaseZ
dchrval.u U=UnitZ
dchrval.n φN
dchrbas.b D=BaseG
dchrelbasd.1 k=xX=A
dchrelbasd.2 k=yX=C
dchrelbasd.3 k=xZyX=E
dchrelbasd.4 k=1ZX=Y
dchrelbasd.5 φkUX
dchrelbasd.6 φxUyUE=AC
dchrelbasd.7 φY=1
Assertion dchrelbasd φkBifkUX0D

Proof

Step Hyp Ref Expression
1 dchrval.g G=DChrN
2 dchrval.z Z=/N
3 dchrval.b B=BaseZ
4 dchrval.u U=UnitZ
5 dchrval.n φN
6 dchrbas.b D=BaseG
7 dchrelbasd.1 k=xX=A
8 dchrelbasd.2 k=yX=C
9 dchrelbasd.3 k=xZyX=E
10 dchrelbasd.4 k=1ZX=Y
11 dchrelbasd.5 φkUX
12 dchrelbasd.6 φxUyUE=AC
13 dchrelbasd.7 φY=1
14 11 adantlr φkBkUX
15 0cnd φkB¬kU0
16 14 15 ifclda φkBifkUX0
17 16 fmpttd φkBifkUX0:B
18 5 nnnn0d φN0
19 2 zncrng N0ZCRing
20 crngring ZCRingZRing
21 18 19 20 3syl φZRing
22 eqid Z=Z
23 4 22 unitmulcl ZRingxUyUxZyU
24 23 3expb ZRingxUyUxZyU
25 21 24 sylan φxUyUxZyU
26 25 iftrued φxUyUifxZyUE0=E
27 26 12 eqtrd φxUyUifxZyUE0=AC
28 eqid kBifkUX0=kBifkUX0
29 eleq1 k=xZykUxZyU
30 29 9 ifbieq1d k=xZyifkUX0=ifxZyUE0
31 3 4 unitss UB
32 31 25 sselid φxUyUxZyB
33 9 eleq1d k=xZyXE
34 11 ralrimiva φkUX
35 34 adantr φxUyUkUX
36 33 35 25 rspcdva φxUyUE
37 26 36 eqeltrd φxUyUifxZyUE0
38 28 30 32 37 fvmptd3 φxUyUkBifkUX0xZy=ifxZyUE0
39 eleq1 k=xkUxU
40 39 7 ifbieq1d k=xifkUX0=ifxUA0
41 simprl φxUyUxU
42 31 41 sselid φxUyUxB
43 iftrue xUifxUA0=A
44 43 ad2antrl φxUyUifxUA0=A
45 7 eleq1d k=xXA
46 45 35 41 rspcdva φxUyUA
47 44 46 eqeltrd φxUyUifxUA0
48 28 40 42 47 fvmptd3 φxUyUkBifkUX0x=ifxUA0
49 48 44 eqtrd φxUyUkBifkUX0x=A
50 eleq1 k=ykUyU
51 50 8 ifbieq1d k=yifkUX0=ifyUC0
52 simprr φxUyUyU
53 31 52 sselid φxUyUyB
54 iftrue yUifyUC0=C
55 54 ad2antll φxUyUifyUC0=C
56 8 eleq1d k=yXC
57 56 35 52 rspcdva φxUyUC
58 55 57 eqeltrd φxUyUifyUC0
59 28 51 53 58 fvmptd3 φxUyUkBifkUX0y=ifyUC0
60 59 55 eqtrd φxUyUkBifkUX0y=C
61 49 60 oveq12d φxUyUkBifkUX0xkBifkUX0y=AC
62 27 38 61 3eqtr4d φxUyUkBifkUX0xZy=kBifkUX0xkBifkUX0y
63 62 ralrimivva φxUyUkBifkUX0xZy=kBifkUX0xkBifkUX0y
64 eleq1 k=1ZkU1ZU
65 64 10 ifbieq1d k=1ZifkUX0=if1ZUY0
66 eqid 1Z=1Z
67 4 66 1unit ZRing1ZU
68 21 67 syl φ1ZU
69 31 68 sselid φ1ZB
70 68 iftrued φif1ZUY0=Y
71 70 13 eqtrd φif1ZUY0=1
72 ax-1cn 1
73 71 72 eqeltrdi φif1ZUY0
74 28 65 69 73 fvmptd3 φkBifkUX01Z=if1ZUY0
75 74 71 eqtrd φkBifkUX01Z=1
76 simpr φxBxB
77 45 rspcv xUkUXA
78 34 77 mpan9 φxUA
79 78 adantlr φxBxUA
80 0cnd φxB¬xU0
81 79 80 ifclda φxBifxUA0
82 28 40 76 81 fvmptd3 φxBkBifkUX0x=ifxUA0
83 82 neeq1d φxBkBifkUX0x0ifxUA00
84 iffalse ¬xUifxUA0=0
85 84 necon1ai ifxUA00xU
86 83 85 syl6bi φxBkBifkUX0x0xU
87 86 ralrimiva φxBkBifkUX0x0xU
88 63 75 87 3jca φxUyUkBifkUX0xZy=kBifkUX0xkBifkUX0ykBifkUX01Z=1xBkBifkUX0x0xU
89 1 2 3 4 5 6 dchrelbas3 φkBifkUX0DkBifkUX0:BxUyUkBifkUX0xZy=kBifkUX0xkBifkUX0ykBifkUX01Z=1xBkBifkUX0x0xU
90 17 88 89 mpbir2and φkBifkUX0D