Metamath Proof Explorer


Definition df-dchr

Description: The group of Dirichlet characters mod n is the set of monoid homomorphisms from ZZ / n ZZ to the multiplicative monoid of the complex numbers, equipped with the group operation of pointwise multiplication. (Contributed by Mario Carneiro, 18-Apr-2016)

Ref Expression
Assertion df-dchr DChr=n/n/zxmulGrpzMndHommulGrpfld|BasezUnitz×0x/bBasendxb+ndxf×b×b

Detailed syntax breakdown

Step Hyp Ref Expression
0 cdchr classDChr
1 vn setvarn
2 cn class
3 czn classℤ/nℤ
4 1 cv setvarn
5 4 3 cfv class/n
6 vz setvarz
7 vx setvarx
8 cmgp classmulGrp
9 6 cv setvarz
10 9 8 cfv classmulGrpz
11 cmhm classMndHom
12 ccnfld classfld
13 12 8 cfv classmulGrpfld
14 10 13 11 co classmulGrpzMndHommulGrpfld
15 cbs classBase
16 9 15 cfv classBasez
17 cui classUnit
18 9 17 cfv classUnitz
19 16 18 cdif classBasezUnitz
20 cc0 class0
21 20 csn class0
22 19 21 cxp classBasezUnitz×0
23 7 cv setvarx
24 22 23 wss wffBasezUnitz×0x
25 24 7 14 crab classxmulGrpzMndHommulGrpfld|BasezUnitz×0x
26 vb setvarb
27 cnx classndx
28 27 15 cfv classBasendx
29 26 cv setvarb
30 28 29 cop classBasendxb
31 cplusg class+𝑔
32 27 31 cfv class+ndx
33 cmul class×
34 33 cof classf×
35 29 29 cxp classb×b
36 34 35 cres classf×b×b
37 32 36 cop class+ndxf×b×b
38 30 37 cpr classBasendxb+ndxf×b×b
39 26 25 38 csb classxmulGrpzMndHommulGrpfld|BasezUnitz×0x/bBasendxb+ndxf×b×b
40 6 5 39 csb class/n/zxmulGrpzMndHommulGrpfld|BasezUnitz×0x/bBasendxb+ndxf×b×b
41 1 2 40 cmpt classn/n/zxmulGrpzMndHommulGrpfld|BasezUnitz×0x/bBasendxb+ndxf×b×b
42 0 41 wceq wffDChr=n/n/zxmulGrpzMndHommulGrpfld|BasezUnitz×0x/bBasendxb+ndxf×b×b