Metamath Proof Explorer


Theorem dchrval

Description: Value of the group of Dirichlet characters. (Contributed by Mario Carneiro, 18-Apr-2016)

Ref Expression
Hypotheses dchrval.g G=DChrN
dchrval.z Z=/N
dchrval.b B=BaseZ
dchrval.u U=UnitZ
dchrval.n φN
dchrval.d φD=xmulGrpZMndHommulGrpfld|BU×0x
Assertion dchrval φG=BasendxD+ndxf×D×D

Proof

Step Hyp Ref Expression
1 dchrval.g G=DChrN
2 dchrval.z Z=/N
3 dchrval.b B=BaseZ
4 dchrval.u U=UnitZ
5 dchrval.n φN
6 dchrval.d φD=xmulGrpZMndHommulGrpfld|BU×0x
7 df-dchr DChr=n/n/zxmulGrpzMndHommulGrpfld|BasezUnitz×0x/bBasendxb+ndxf×b×b
8 fvexd φn=N/nV
9 ovex mulGrpzMndHommulGrpfldV
10 9 rabex xmulGrpzMndHommulGrpfld|BasezUnitz×0xV
11 10 a1i φn=Nz=/nxmulGrpzMndHommulGrpfld|BasezUnitz×0xV
12 6 ad2antrr φn=Nz=/nD=xmulGrpZMndHommulGrpfld|BU×0x
13 simpr φn=Nn=N
14 13 fveq2d φn=N/n=/N
15 2 14 eqtr4id φn=NZ=/n
16 15 eqeq2d φn=Nz=Zz=/n
17 16 biimpar φn=Nz=/nz=Z
18 17 fveq2d φn=Nz=/nmulGrpz=mulGrpZ
19 18 oveq1d φn=Nz=/nmulGrpzMndHommulGrpfld=mulGrpZMndHommulGrpfld
20 17 fveq2d φn=Nz=/nBasez=BaseZ
21 20 3 eqtr4di φn=Nz=/nBasez=B
22 17 fveq2d φn=Nz=/nUnitz=UnitZ
23 22 4 eqtr4di φn=Nz=/nUnitz=U
24 21 23 difeq12d φn=Nz=/nBasezUnitz=BU
25 24 xpeq1d φn=Nz=/nBasezUnitz×0=BU×0
26 25 sseq1d φn=Nz=/nBasezUnitz×0xBU×0x
27 19 26 rabeqbidv φn=Nz=/nxmulGrpzMndHommulGrpfld|BasezUnitz×0x=xmulGrpZMndHommulGrpfld|BU×0x
28 12 27 eqtr4d φn=Nz=/nD=xmulGrpzMndHommulGrpfld|BasezUnitz×0x
29 28 eqeq2d φn=Nz=/nb=Db=xmulGrpzMndHommulGrpfld|BasezUnitz×0x
30 29 biimpar φn=Nz=/nb=xmulGrpzMndHommulGrpfld|BasezUnitz×0xb=D
31 30 opeq2d φn=Nz=/nb=xmulGrpzMndHommulGrpfld|BasezUnitz×0xBasendxb=BasendxD
32 30 sqxpeqd φn=Nz=/nb=xmulGrpzMndHommulGrpfld|BasezUnitz×0xb×b=D×D
33 32 reseq2d φn=Nz=/nb=xmulGrpzMndHommulGrpfld|BasezUnitz×0xf×b×b=f×D×D
34 33 opeq2d φn=Nz=/nb=xmulGrpzMndHommulGrpfld|BasezUnitz×0x+ndxf×b×b=+ndxf×D×D
35 31 34 preq12d φn=Nz=/nb=xmulGrpzMndHommulGrpfld|BasezUnitz×0xBasendxb+ndxf×b×b=BasendxD+ndxf×D×D
36 11 35 csbied φn=Nz=/nxmulGrpzMndHommulGrpfld|BasezUnitz×0x/bBasendxb+ndxf×b×b=BasendxD+ndxf×D×D
37 8 36 csbied φn=N/n/zxmulGrpzMndHommulGrpfld|BasezUnitz×0x/bBasendxb+ndxf×b×b=BasendxD+ndxf×D×D
38 prex BasendxD+ndxf×D×DV
39 38 a1i φBasendxD+ndxf×D×DV
40 7 37 5 39 fvmptd2 φDChrN=BasendxD+ndxf×D×D
41 1 40 eqtrid φG=BasendxD+ndxf×D×D