Metamath Proof Explorer


Theorem dchrbas

Description: Base set of the group of Dirichlet characters. (Contributed by Mario Carneiro, 18-Apr-2016)

Ref Expression
Hypotheses dchrval.g G=DChrN
dchrval.z Z=/N
dchrval.b B=BaseZ
dchrval.u U=UnitZ
dchrval.n φN
dchrbas.b D=BaseG
Assertion dchrbas φD=xmulGrpZMndHommulGrpfld|BU×0x

Proof

Step Hyp Ref Expression
1 dchrval.g G=DChrN
2 dchrval.z Z=/N
3 dchrval.b B=BaseZ
4 dchrval.u U=UnitZ
5 dchrval.n φN
6 dchrbas.b D=BaseG
7 eqidd φxmulGrpZMndHommulGrpfld|BU×0x=xmulGrpZMndHommulGrpfld|BU×0x
8 1 2 3 4 5 7 dchrval φG=BasendxxmulGrpZMndHommulGrpfld|BU×0x+ndxf×xmulGrpZMndHommulGrpfld|BU×0x×xmulGrpZMndHommulGrpfld|BU×0x
9 8 fveq2d φBaseG=BaseBasendxxmulGrpZMndHommulGrpfld|BU×0x+ndxf×xmulGrpZMndHommulGrpfld|BU×0x×xmulGrpZMndHommulGrpfld|BU×0x
10 ovex mulGrpZMndHommulGrpfldV
11 10 rabex xmulGrpZMndHommulGrpfld|BU×0xV
12 eqid BasendxxmulGrpZMndHommulGrpfld|BU×0x+ndxf×xmulGrpZMndHommulGrpfld|BU×0x×xmulGrpZMndHommulGrpfld|BU×0x=BasendxxmulGrpZMndHommulGrpfld|BU×0x+ndxf×xmulGrpZMndHommulGrpfld|BU×0x×xmulGrpZMndHommulGrpfld|BU×0x
13 12 grpbase xmulGrpZMndHommulGrpfld|BU×0xVxmulGrpZMndHommulGrpfld|BU×0x=BaseBasendxxmulGrpZMndHommulGrpfld|BU×0x+ndxf×xmulGrpZMndHommulGrpfld|BU×0x×xmulGrpZMndHommulGrpfld|BU×0x
14 11 13 ax-mp xmulGrpZMndHommulGrpfld|BU×0x=BaseBasendxxmulGrpZMndHommulGrpfld|BU×0x+ndxf×xmulGrpZMndHommulGrpfld|BU×0x×xmulGrpZMndHommulGrpfld|BU×0x
15 9 6 14 3eqtr4g φD=xmulGrpZMndHommulGrpfld|BU×0x