| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dchrval.g |
|- G = ( DChr ` N ) |
| 2 |
|
dchrval.z |
|- Z = ( Z/nZ ` N ) |
| 3 |
|
dchrval.b |
|- B = ( Base ` Z ) |
| 4 |
|
dchrval.u |
|- U = ( Unit ` Z ) |
| 5 |
|
dchrval.n |
|- ( ph -> N e. NN ) |
| 6 |
|
dchrbas.b |
|- D = ( Base ` G ) |
| 7 |
|
eqidd |
|- ( ph -> { x e. ( ( mulGrp ` Z ) MndHom ( mulGrp ` CCfld ) ) | ( ( B \ U ) X. { 0 } ) C_ x } = { x e. ( ( mulGrp ` Z ) MndHom ( mulGrp ` CCfld ) ) | ( ( B \ U ) X. { 0 } ) C_ x } ) |
| 8 |
1 2 3 4 5 7
|
dchrval |
|- ( ph -> G = { <. ( Base ` ndx ) , { x e. ( ( mulGrp ` Z ) MndHom ( mulGrp ` CCfld ) ) | ( ( B \ U ) X. { 0 } ) C_ x } >. , <. ( +g ` ndx ) , ( oF x. |` ( { x e. ( ( mulGrp ` Z ) MndHom ( mulGrp ` CCfld ) ) | ( ( B \ U ) X. { 0 } ) C_ x } X. { x e. ( ( mulGrp ` Z ) MndHom ( mulGrp ` CCfld ) ) | ( ( B \ U ) X. { 0 } ) C_ x } ) ) >. } ) |
| 9 |
8
|
fveq2d |
|- ( ph -> ( Base ` G ) = ( Base ` { <. ( Base ` ndx ) , { x e. ( ( mulGrp ` Z ) MndHom ( mulGrp ` CCfld ) ) | ( ( B \ U ) X. { 0 } ) C_ x } >. , <. ( +g ` ndx ) , ( oF x. |` ( { x e. ( ( mulGrp ` Z ) MndHom ( mulGrp ` CCfld ) ) | ( ( B \ U ) X. { 0 } ) C_ x } X. { x e. ( ( mulGrp ` Z ) MndHom ( mulGrp ` CCfld ) ) | ( ( B \ U ) X. { 0 } ) C_ x } ) ) >. } ) ) |
| 10 |
|
ovex |
|- ( ( mulGrp ` Z ) MndHom ( mulGrp ` CCfld ) ) e. _V |
| 11 |
10
|
rabex |
|- { x e. ( ( mulGrp ` Z ) MndHom ( mulGrp ` CCfld ) ) | ( ( B \ U ) X. { 0 } ) C_ x } e. _V |
| 12 |
|
eqid |
|- { <. ( Base ` ndx ) , { x e. ( ( mulGrp ` Z ) MndHom ( mulGrp ` CCfld ) ) | ( ( B \ U ) X. { 0 } ) C_ x } >. , <. ( +g ` ndx ) , ( oF x. |` ( { x e. ( ( mulGrp ` Z ) MndHom ( mulGrp ` CCfld ) ) | ( ( B \ U ) X. { 0 } ) C_ x } X. { x e. ( ( mulGrp ` Z ) MndHom ( mulGrp ` CCfld ) ) | ( ( B \ U ) X. { 0 } ) C_ x } ) ) >. } = { <. ( Base ` ndx ) , { x e. ( ( mulGrp ` Z ) MndHom ( mulGrp ` CCfld ) ) | ( ( B \ U ) X. { 0 } ) C_ x } >. , <. ( +g ` ndx ) , ( oF x. |` ( { x e. ( ( mulGrp ` Z ) MndHom ( mulGrp ` CCfld ) ) | ( ( B \ U ) X. { 0 } ) C_ x } X. { x e. ( ( mulGrp ` Z ) MndHom ( mulGrp ` CCfld ) ) | ( ( B \ U ) X. { 0 } ) C_ x } ) ) >. } |
| 13 |
12
|
grpbase |
|- ( { x e. ( ( mulGrp ` Z ) MndHom ( mulGrp ` CCfld ) ) | ( ( B \ U ) X. { 0 } ) C_ x } e. _V -> { x e. ( ( mulGrp ` Z ) MndHom ( mulGrp ` CCfld ) ) | ( ( B \ U ) X. { 0 } ) C_ x } = ( Base ` { <. ( Base ` ndx ) , { x e. ( ( mulGrp ` Z ) MndHom ( mulGrp ` CCfld ) ) | ( ( B \ U ) X. { 0 } ) C_ x } >. , <. ( +g ` ndx ) , ( oF x. |` ( { x e. ( ( mulGrp ` Z ) MndHom ( mulGrp ` CCfld ) ) | ( ( B \ U ) X. { 0 } ) C_ x } X. { x e. ( ( mulGrp ` Z ) MndHom ( mulGrp ` CCfld ) ) | ( ( B \ U ) X. { 0 } ) C_ x } ) ) >. } ) ) |
| 14 |
11 13
|
ax-mp |
|- { x e. ( ( mulGrp ` Z ) MndHom ( mulGrp ` CCfld ) ) | ( ( B \ U ) X. { 0 } ) C_ x } = ( Base ` { <. ( Base ` ndx ) , { x e. ( ( mulGrp ` Z ) MndHom ( mulGrp ` CCfld ) ) | ( ( B \ U ) X. { 0 } ) C_ x } >. , <. ( +g ` ndx ) , ( oF x. |` ( { x e. ( ( mulGrp ` Z ) MndHom ( mulGrp ` CCfld ) ) | ( ( B \ U ) X. { 0 } ) C_ x } X. { x e. ( ( mulGrp ` Z ) MndHom ( mulGrp ` CCfld ) ) | ( ( B \ U ) X. { 0 } ) C_ x } ) ) >. } ) |
| 15 |
9 6 14
|
3eqtr4g |
|- ( ph -> D = { x e. ( ( mulGrp ` Z ) MndHom ( mulGrp ` CCfld ) ) | ( ( B \ U ) X. { 0 } ) C_ x } ) |