| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dchrval.g |
|- G = ( DChr ` N ) |
| 2 |
|
dchrval.z |
|- Z = ( Z/nZ ` N ) |
| 3 |
|
dchrval.b |
|- B = ( Base ` Z ) |
| 4 |
|
dchrval.u |
|- U = ( Unit ` Z ) |
| 5 |
|
dchrval.n |
|- ( ph -> N e. NN ) |
| 6 |
|
dchrbas.b |
|- D = ( Base ` G ) |
| 7 |
1 2 3 4 5 6
|
dchrelbas |
|- ( ph -> ( X e. D <-> ( X e. ( ( mulGrp ` Z ) MndHom ( mulGrp ` CCfld ) ) /\ ( ( B \ U ) X. { 0 } ) C_ X ) ) ) |
| 8 |
|
eqid |
|- ( mulGrp ` Z ) = ( mulGrp ` Z ) |
| 9 |
8 3
|
mgpbas |
|- B = ( Base ` ( mulGrp ` Z ) ) |
| 10 |
|
eqid |
|- ( mulGrp ` CCfld ) = ( mulGrp ` CCfld ) |
| 11 |
|
cnfldbas |
|- CC = ( Base ` CCfld ) |
| 12 |
10 11
|
mgpbas |
|- CC = ( Base ` ( mulGrp ` CCfld ) ) |
| 13 |
9 12
|
mhmf |
|- ( X e. ( ( mulGrp ` Z ) MndHom ( mulGrp ` CCfld ) ) -> X : B --> CC ) |
| 14 |
13
|
adantl |
|- ( ( ph /\ X e. ( ( mulGrp ` Z ) MndHom ( mulGrp ` CCfld ) ) ) -> X : B --> CC ) |
| 15 |
14
|
ffund |
|- ( ( ph /\ X e. ( ( mulGrp ` Z ) MndHom ( mulGrp ` CCfld ) ) ) -> Fun X ) |
| 16 |
|
funssres |
|- ( ( Fun X /\ ( ( B \ U ) X. { 0 } ) C_ X ) -> ( X |` dom ( ( B \ U ) X. { 0 } ) ) = ( ( B \ U ) X. { 0 } ) ) |
| 17 |
15 16
|
sylan |
|- ( ( ( ph /\ X e. ( ( mulGrp ` Z ) MndHom ( mulGrp ` CCfld ) ) ) /\ ( ( B \ U ) X. { 0 } ) C_ X ) -> ( X |` dom ( ( B \ U ) X. { 0 } ) ) = ( ( B \ U ) X. { 0 } ) ) |
| 18 |
|
simpr |
|- ( ( ( ph /\ X e. ( ( mulGrp ` Z ) MndHom ( mulGrp ` CCfld ) ) ) /\ ( X |` dom ( ( B \ U ) X. { 0 } ) ) = ( ( B \ U ) X. { 0 } ) ) -> ( X |` dom ( ( B \ U ) X. { 0 } ) ) = ( ( B \ U ) X. { 0 } ) ) |
| 19 |
|
resss |
|- ( X |` dom ( ( B \ U ) X. { 0 } ) ) C_ X |
| 20 |
18 19
|
eqsstrrdi |
|- ( ( ( ph /\ X e. ( ( mulGrp ` Z ) MndHom ( mulGrp ` CCfld ) ) ) /\ ( X |` dom ( ( B \ U ) X. { 0 } ) ) = ( ( B \ U ) X. { 0 } ) ) -> ( ( B \ U ) X. { 0 } ) C_ X ) |
| 21 |
17 20
|
impbida |
|- ( ( ph /\ X e. ( ( mulGrp ` Z ) MndHom ( mulGrp ` CCfld ) ) ) -> ( ( ( B \ U ) X. { 0 } ) C_ X <-> ( X |` dom ( ( B \ U ) X. { 0 } ) ) = ( ( B \ U ) X. { 0 } ) ) ) |
| 22 |
|
0cn |
|- 0 e. CC |
| 23 |
|
fconst6g |
|- ( 0 e. CC -> ( ( B \ U ) X. { 0 } ) : ( B \ U ) --> CC ) |
| 24 |
22 23
|
mp1i |
|- ( ( ph /\ X e. ( ( mulGrp ` Z ) MndHom ( mulGrp ` CCfld ) ) ) -> ( ( B \ U ) X. { 0 } ) : ( B \ U ) --> CC ) |
| 25 |
24
|
fdmd |
|- ( ( ph /\ X e. ( ( mulGrp ` Z ) MndHom ( mulGrp ` CCfld ) ) ) -> dom ( ( B \ U ) X. { 0 } ) = ( B \ U ) ) |
| 26 |
25
|
reseq2d |
|- ( ( ph /\ X e. ( ( mulGrp ` Z ) MndHom ( mulGrp ` CCfld ) ) ) -> ( X |` dom ( ( B \ U ) X. { 0 } ) ) = ( X |` ( B \ U ) ) ) |
| 27 |
26
|
eqeq1d |
|- ( ( ph /\ X e. ( ( mulGrp ` Z ) MndHom ( mulGrp ` CCfld ) ) ) -> ( ( X |` dom ( ( B \ U ) X. { 0 } ) ) = ( ( B \ U ) X. { 0 } ) <-> ( X |` ( B \ U ) ) = ( ( B \ U ) X. { 0 } ) ) ) |
| 28 |
|
difss |
|- ( B \ U ) C_ B |
| 29 |
|
fssres |
|- ( ( X : B --> CC /\ ( B \ U ) C_ B ) -> ( X |` ( B \ U ) ) : ( B \ U ) --> CC ) |
| 30 |
14 28 29
|
sylancl |
|- ( ( ph /\ X e. ( ( mulGrp ` Z ) MndHom ( mulGrp ` CCfld ) ) ) -> ( X |` ( B \ U ) ) : ( B \ U ) --> CC ) |
| 31 |
30
|
ffnd |
|- ( ( ph /\ X e. ( ( mulGrp ` Z ) MndHom ( mulGrp ` CCfld ) ) ) -> ( X |` ( B \ U ) ) Fn ( B \ U ) ) |
| 32 |
24
|
ffnd |
|- ( ( ph /\ X e. ( ( mulGrp ` Z ) MndHom ( mulGrp ` CCfld ) ) ) -> ( ( B \ U ) X. { 0 } ) Fn ( B \ U ) ) |
| 33 |
|
eqfnfv |
|- ( ( ( X |` ( B \ U ) ) Fn ( B \ U ) /\ ( ( B \ U ) X. { 0 } ) Fn ( B \ U ) ) -> ( ( X |` ( B \ U ) ) = ( ( B \ U ) X. { 0 } ) <-> A. x e. ( B \ U ) ( ( X |` ( B \ U ) ) ` x ) = ( ( ( B \ U ) X. { 0 } ) ` x ) ) ) |
| 34 |
31 32 33
|
syl2anc |
|- ( ( ph /\ X e. ( ( mulGrp ` Z ) MndHom ( mulGrp ` CCfld ) ) ) -> ( ( X |` ( B \ U ) ) = ( ( B \ U ) X. { 0 } ) <-> A. x e. ( B \ U ) ( ( X |` ( B \ U ) ) ` x ) = ( ( ( B \ U ) X. { 0 } ) ` x ) ) ) |
| 35 |
|
fvres |
|- ( x e. ( B \ U ) -> ( ( X |` ( B \ U ) ) ` x ) = ( X ` x ) ) |
| 36 |
|
c0ex |
|- 0 e. _V |
| 37 |
36
|
fvconst2 |
|- ( x e. ( B \ U ) -> ( ( ( B \ U ) X. { 0 } ) ` x ) = 0 ) |
| 38 |
35 37
|
eqeq12d |
|- ( x e. ( B \ U ) -> ( ( ( X |` ( B \ U ) ) ` x ) = ( ( ( B \ U ) X. { 0 } ) ` x ) <-> ( X ` x ) = 0 ) ) |
| 39 |
38
|
ralbiia |
|- ( A. x e. ( B \ U ) ( ( X |` ( B \ U ) ) ` x ) = ( ( ( B \ U ) X. { 0 } ) ` x ) <-> A. x e. ( B \ U ) ( X ` x ) = 0 ) |
| 40 |
|
eldif |
|- ( x e. ( B \ U ) <-> ( x e. B /\ -. x e. U ) ) |
| 41 |
40
|
imbi1i |
|- ( ( x e. ( B \ U ) -> ( X ` x ) = 0 ) <-> ( ( x e. B /\ -. x e. U ) -> ( X ` x ) = 0 ) ) |
| 42 |
|
impexp |
|- ( ( ( x e. B /\ -. x e. U ) -> ( X ` x ) = 0 ) <-> ( x e. B -> ( -. x e. U -> ( X ` x ) = 0 ) ) ) |
| 43 |
|
con1b |
|- ( ( -. x e. U -> ( X ` x ) = 0 ) <-> ( -. ( X ` x ) = 0 -> x e. U ) ) |
| 44 |
|
df-ne |
|- ( ( X ` x ) =/= 0 <-> -. ( X ` x ) = 0 ) |
| 45 |
44
|
imbi1i |
|- ( ( ( X ` x ) =/= 0 -> x e. U ) <-> ( -. ( X ` x ) = 0 -> x e. U ) ) |
| 46 |
43 45
|
bitr4i |
|- ( ( -. x e. U -> ( X ` x ) = 0 ) <-> ( ( X ` x ) =/= 0 -> x e. U ) ) |
| 47 |
46
|
imbi2i |
|- ( ( x e. B -> ( -. x e. U -> ( X ` x ) = 0 ) ) <-> ( x e. B -> ( ( X ` x ) =/= 0 -> x e. U ) ) ) |
| 48 |
41 42 47
|
3bitri |
|- ( ( x e. ( B \ U ) -> ( X ` x ) = 0 ) <-> ( x e. B -> ( ( X ` x ) =/= 0 -> x e. U ) ) ) |
| 49 |
48
|
ralbii2 |
|- ( A. x e. ( B \ U ) ( X ` x ) = 0 <-> A. x e. B ( ( X ` x ) =/= 0 -> x e. U ) ) |
| 50 |
39 49
|
bitri |
|- ( A. x e. ( B \ U ) ( ( X |` ( B \ U ) ) ` x ) = ( ( ( B \ U ) X. { 0 } ) ` x ) <-> A. x e. B ( ( X ` x ) =/= 0 -> x e. U ) ) |
| 51 |
34 50
|
bitrdi |
|- ( ( ph /\ X e. ( ( mulGrp ` Z ) MndHom ( mulGrp ` CCfld ) ) ) -> ( ( X |` ( B \ U ) ) = ( ( B \ U ) X. { 0 } ) <-> A. x e. B ( ( X ` x ) =/= 0 -> x e. U ) ) ) |
| 52 |
21 27 51
|
3bitrd |
|- ( ( ph /\ X e. ( ( mulGrp ` Z ) MndHom ( mulGrp ` CCfld ) ) ) -> ( ( ( B \ U ) X. { 0 } ) C_ X <-> A. x e. B ( ( X ` x ) =/= 0 -> x e. U ) ) ) |
| 53 |
52
|
pm5.32da |
|- ( ph -> ( ( X e. ( ( mulGrp ` Z ) MndHom ( mulGrp ` CCfld ) ) /\ ( ( B \ U ) X. { 0 } ) C_ X ) <-> ( X e. ( ( mulGrp ` Z ) MndHom ( mulGrp ` CCfld ) ) /\ A. x e. B ( ( X ` x ) =/= 0 -> x e. U ) ) ) ) |
| 54 |
7 53
|
bitrd |
|- ( ph -> ( X e. D <-> ( X e. ( ( mulGrp ` Z ) MndHom ( mulGrp ` CCfld ) ) /\ A. x e. B ( ( X ` x ) =/= 0 -> x e. U ) ) ) ) |