Metamath Proof Explorer


Theorem dchr1cl

Description: Closure of the principal Dirichlet character. (Contributed by Mario Carneiro, 18-Apr-2016)

Ref Expression
Hypotheses dchrmhm.g G=DChrN
dchrmhm.z Z=/N
dchrmhm.b D=BaseG
dchrn0.b B=BaseZ
dchrn0.u U=UnitZ
dchr1cl.o 1˙=kBifkU10
dchr1cl.n φN
Assertion dchr1cl φ1˙D

Proof

Step Hyp Ref Expression
1 dchrmhm.g G=DChrN
2 dchrmhm.z Z=/N
3 dchrmhm.b D=BaseG
4 dchrn0.b B=BaseZ
5 dchrn0.u U=UnitZ
6 dchr1cl.o 1˙=kBifkU10
7 dchr1cl.n φN
8 eqidd k=x1=1
9 eqidd k=y1=1
10 eqidd k=xZy1=1
11 eqidd k=1Z1=1
12 1cnd φkU1
13 1t1e1 11=1
14 13 eqcomi 1=11
15 14 a1i φxUyU1=11
16 eqidd φ1=1
17 1 2 4 5 7 3 8 9 10 11 12 15 16 dchrelbasd φkBifkU10D
18 6 17 eqeltrid φ1˙D