Metamath Proof Explorer


Theorem dchrmullid

Description: Left identity for the principal Dirichlet character. (Contributed by Mario Carneiro, 18-Apr-2016)

Ref Expression
Hypotheses dchrmhm.g G=DChrN
dchrmhm.z Z=/N
dchrmhm.b D=BaseG
dchrn0.b B=BaseZ
dchrn0.u U=UnitZ
dchr1cl.o 1˙=kBifkU10
dchrmullid.t ·˙=+G
dchrmullid.x φXD
Assertion dchrmullid φ1˙·˙X=X

Proof

Step Hyp Ref Expression
1 dchrmhm.g G=DChrN
2 dchrmhm.z Z=/N
3 dchrmhm.b D=BaseG
4 dchrn0.b B=BaseZ
5 dchrn0.u U=UnitZ
6 dchr1cl.o 1˙=kBifkU10
7 dchrmullid.t ·˙=+G
8 dchrmullid.x φXD
9 1 3 dchrrcl XDN
10 8 9 syl φN
11 1 2 3 4 5 6 10 dchr1cl φ1˙D
12 1 2 3 7 11 8 dchrmul φ1˙·˙X=1˙×fX
13 oveq1 1=ifkU101Xk=ifkU10Xk
14 13 eqeq1d 1=ifkU101Xk=XkifkU10Xk=Xk
15 oveq1 0=ifkU100Xk=ifkU10Xk
16 15 eqeq1d 0=ifkU100Xk=XkifkU10Xk=Xk
17 1 2 3 4 8 dchrf φX:B
18 17 ffvelcdmda φkBXk
19 18 adantr φkBkUXk
20 19 mullidd φkBkU1Xk=Xk
21 0cn 0
22 21 mul02i 00=0
23 1 2 4 5 10 3 dchrelbas2 φXDXmulGrpZMndHommulGrpfldkBXk0kU
24 8 23 mpbid φXmulGrpZMndHommulGrpfldkBXk0kU
25 24 simprd φkBXk0kU
26 25 r19.21bi φkBXk0kU
27 26 necon1bd φkB¬kUXk=0
28 27 imp φkB¬kUXk=0
29 28 oveq2d φkB¬kU0Xk=00
30 22 29 28 3eqtr4a φkB¬kU0Xk=Xk
31 14 16 20 30 ifbothda φkBifkU10Xk=Xk
32 31 mpteq2dva φkBifkU10Xk=kBXk
33 4 fvexi BV
34 33 a1i φBV
35 ax-1cn 1
36 35 21 ifcli ifkU10
37 36 a1i φkBifkU10
38 6 a1i φ1˙=kBifkU10
39 17 feqmptd φX=kBXk
40 34 37 18 38 39 offval2 φ1˙×fX=kBifkU10Xk
41 32 40 39 3eqtr4d φ1˙×fX=X
42 12 41 eqtrd φ1˙·˙X=X