| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dchrmhm.g |
|- G = ( DChr ` N ) |
| 2 |
|
dchrmhm.z |
|- Z = ( Z/nZ ` N ) |
| 3 |
|
dchrmhm.b |
|- D = ( Base ` G ) |
| 4 |
|
dchrn0.b |
|- B = ( Base ` Z ) |
| 5 |
|
dchrn0.u |
|- U = ( Unit ` Z ) |
| 6 |
|
dchr1cl.o |
|- .1. = ( k e. B |-> if ( k e. U , 1 , 0 ) ) |
| 7 |
|
dchrmullid.t |
|- .x. = ( +g ` G ) |
| 8 |
|
dchrmullid.x |
|- ( ph -> X e. D ) |
| 9 |
1 3
|
dchrrcl |
|- ( X e. D -> N e. NN ) |
| 10 |
8 9
|
syl |
|- ( ph -> N e. NN ) |
| 11 |
1 2 3 4 5 6 10
|
dchr1cl |
|- ( ph -> .1. e. D ) |
| 12 |
1 2 3 7 11 8
|
dchrmul |
|- ( ph -> ( .1. .x. X ) = ( .1. oF x. X ) ) |
| 13 |
|
oveq1 |
|- ( 1 = if ( k e. U , 1 , 0 ) -> ( 1 x. ( X ` k ) ) = ( if ( k e. U , 1 , 0 ) x. ( X ` k ) ) ) |
| 14 |
13
|
eqeq1d |
|- ( 1 = if ( k e. U , 1 , 0 ) -> ( ( 1 x. ( X ` k ) ) = ( X ` k ) <-> ( if ( k e. U , 1 , 0 ) x. ( X ` k ) ) = ( X ` k ) ) ) |
| 15 |
|
oveq1 |
|- ( 0 = if ( k e. U , 1 , 0 ) -> ( 0 x. ( X ` k ) ) = ( if ( k e. U , 1 , 0 ) x. ( X ` k ) ) ) |
| 16 |
15
|
eqeq1d |
|- ( 0 = if ( k e. U , 1 , 0 ) -> ( ( 0 x. ( X ` k ) ) = ( X ` k ) <-> ( if ( k e. U , 1 , 0 ) x. ( X ` k ) ) = ( X ` k ) ) ) |
| 17 |
1 2 3 4 8
|
dchrf |
|- ( ph -> X : B --> CC ) |
| 18 |
17
|
ffvelcdmda |
|- ( ( ph /\ k e. B ) -> ( X ` k ) e. CC ) |
| 19 |
18
|
adantr |
|- ( ( ( ph /\ k e. B ) /\ k e. U ) -> ( X ` k ) e. CC ) |
| 20 |
19
|
mullidd |
|- ( ( ( ph /\ k e. B ) /\ k e. U ) -> ( 1 x. ( X ` k ) ) = ( X ` k ) ) |
| 21 |
|
0cn |
|- 0 e. CC |
| 22 |
21
|
mul02i |
|- ( 0 x. 0 ) = 0 |
| 23 |
1 2 4 5 10 3
|
dchrelbas2 |
|- ( ph -> ( X e. D <-> ( X e. ( ( mulGrp ` Z ) MndHom ( mulGrp ` CCfld ) ) /\ A. k e. B ( ( X ` k ) =/= 0 -> k e. U ) ) ) ) |
| 24 |
8 23
|
mpbid |
|- ( ph -> ( X e. ( ( mulGrp ` Z ) MndHom ( mulGrp ` CCfld ) ) /\ A. k e. B ( ( X ` k ) =/= 0 -> k e. U ) ) ) |
| 25 |
24
|
simprd |
|- ( ph -> A. k e. B ( ( X ` k ) =/= 0 -> k e. U ) ) |
| 26 |
25
|
r19.21bi |
|- ( ( ph /\ k e. B ) -> ( ( X ` k ) =/= 0 -> k e. U ) ) |
| 27 |
26
|
necon1bd |
|- ( ( ph /\ k e. B ) -> ( -. k e. U -> ( X ` k ) = 0 ) ) |
| 28 |
27
|
imp |
|- ( ( ( ph /\ k e. B ) /\ -. k e. U ) -> ( X ` k ) = 0 ) |
| 29 |
28
|
oveq2d |
|- ( ( ( ph /\ k e. B ) /\ -. k e. U ) -> ( 0 x. ( X ` k ) ) = ( 0 x. 0 ) ) |
| 30 |
22 29 28
|
3eqtr4a |
|- ( ( ( ph /\ k e. B ) /\ -. k e. U ) -> ( 0 x. ( X ` k ) ) = ( X ` k ) ) |
| 31 |
14 16 20 30
|
ifbothda |
|- ( ( ph /\ k e. B ) -> ( if ( k e. U , 1 , 0 ) x. ( X ` k ) ) = ( X ` k ) ) |
| 32 |
31
|
mpteq2dva |
|- ( ph -> ( k e. B |-> ( if ( k e. U , 1 , 0 ) x. ( X ` k ) ) ) = ( k e. B |-> ( X ` k ) ) ) |
| 33 |
4
|
fvexi |
|- B e. _V |
| 34 |
33
|
a1i |
|- ( ph -> B e. _V ) |
| 35 |
|
ax-1cn |
|- 1 e. CC |
| 36 |
35 21
|
ifcli |
|- if ( k e. U , 1 , 0 ) e. CC |
| 37 |
36
|
a1i |
|- ( ( ph /\ k e. B ) -> if ( k e. U , 1 , 0 ) e. CC ) |
| 38 |
6
|
a1i |
|- ( ph -> .1. = ( k e. B |-> if ( k e. U , 1 , 0 ) ) ) |
| 39 |
17
|
feqmptd |
|- ( ph -> X = ( k e. B |-> ( X ` k ) ) ) |
| 40 |
34 37 18 38 39
|
offval2 |
|- ( ph -> ( .1. oF x. X ) = ( k e. B |-> ( if ( k e. U , 1 , 0 ) x. ( X ` k ) ) ) ) |
| 41 |
32 40 39
|
3eqtr4d |
|- ( ph -> ( .1. oF x. X ) = X ) |
| 42 |
12 41
|
eqtrd |
|- ( ph -> ( .1. .x. X ) = X ) |