Step |
Hyp |
Ref |
Expression |
1 |
|
dchrrcl.g |
⊢ 𝐺 = ( DChr ‘ 𝑁 ) |
2 |
|
dchrrcl.b |
⊢ 𝐷 = ( Base ‘ 𝐺 ) |
3 |
|
df-dchr |
⊢ DChr = ( 𝑛 ∈ ℕ ↦ ⦋ ( ℤ/nℤ ‘ 𝑛 ) / 𝑧 ⦌ ⦋ { 𝑥 ∈ ( ( mulGrp ‘ 𝑧 ) MndHom ( mulGrp ‘ ℂfld ) ) ∣ ( ( ( Base ‘ 𝑧 ) ∖ ( Unit ‘ 𝑧 ) ) × { 0 } ) ⊆ 𝑥 } / 𝑏 ⦌ { 〈 ( Base ‘ ndx ) , 𝑏 〉 , 〈 ( +g ‘ ndx ) , ( ∘f · ↾ ( 𝑏 × 𝑏 ) ) 〉 } ) |
4 |
3
|
dmmptss |
⊢ dom DChr ⊆ ℕ |
5 |
|
n0i |
⊢ ( 𝑋 ∈ 𝐷 → ¬ 𝐷 = ∅ ) |
6 |
|
ndmfv |
⊢ ( ¬ 𝑁 ∈ dom DChr → ( DChr ‘ 𝑁 ) = ∅ ) |
7 |
1 6
|
eqtrid |
⊢ ( ¬ 𝑁 ∈ dom DChr → 𝐺 = ∅ ) |
8 |
|
fveq2 |
⊢ ( 𝐺 = ∅ → ( Base ‘ 𝐺 ) = ( Base ‘ ∅ ) ) |
9 |
|
base0 |
⊢ ∅ = ( Base ‘ ∅ ) |
10 |
8 2 9
|
3eqtr4g |
⊢ ( 𝐺 = ∅ → 𝐷 = ∅ ) |
11 |
7 10
|
syl |
⊢ ( ¬ 𝑁 ∈ dom DChr → 𝐷 = ∅ ) |
12 |
5 11
|
nsyl2 |
⊢ ( 𝑋 ∈ 𝐷 → 𝑁 ∈ dom DChr ) |
13 |
4 12
|
sselid |
⊢ ( 𝑋 ∈ 𝐷 → 𝑁 ∈ ℕ ) |