| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dchr1re.g |
⊢ 𝐺 = ( DChr ‘ 𝑁 ) |
| 2 |
|
dchr1re.z |
⊢ 𝑍 = ( ℤ/nℤ ‘ 𝑁 ) |
| 3 |
|
dchr1re.o |
⊢ 1 = ( 0g ‘ 𝐺 ) |
| 4 |
|
dchr1re.b |
⊢ 𝐵 = ( Base ‘ 𝑍 ) |
| 5 |
|
dchr1re.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
| 6 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
| 7 |
1
|
dchrabl |
⊢ ( 𝑁 ∈ ℕ → 𝐺 ∈ Abel ) |
| 8 |
|
ablgrp |
⊢ ( 𝐺 ∈ Abel → 𝐺 ∈ Grp ) |
| 9 |
6 3
|
grpidcl |
⊢ ( 𝐺 ∈ Grp → 1 ∈ ( Base ‘ 𝐺 ) ) |
| 10 |
5 7 8 9
|
4syl |
⊢ ( 𝜑 → 1 ∈ ( Base ‘ 𝐺 ) ) |
| 11 |
1 2 6 4 10
|
dchrf |
⊢ ( 𝜑 → 1 : 𝐵 ⟶ ℂ ) |
| 12 |
11
|
ffnd |
⊢ ( 𝜑 → 1 Fn 𝐵 ) |
| 13 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 1 ‘ 𝑥 ) = 0 ) → ( 1 ‘ 𝑥 ) = 0 ) |
| 14 |
|
0re |
⊢ 0 ∈ ℝ |
| 15 |
13 14
|
eqeltrdi |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 1 ‘ 𝑥 ) = 0 ) → ( 1 ‘ 𝑥 ) ∈ ℝ ) |
| 16 |
|
eqid |
⊢ ( Unit ‘ 𝑍 ) = ( Unit ‘ 𝑍 ) |
| 17 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 1 ‘ 𝑥 ) ≠ 0 ) → 𝑁 ∈ ℕ ) |
| 18 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 1 ∈ ( Base ‘ 𝐺 ) ) |
| 19 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ 𝐵 ) |
| 20 |
1 2 6 4 16 18 19
|
dchrn0 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ( 1 ‘ 𝑥 ) ≠ 0 ↔ 𝑥 ∈ ( Unit ‘ 𝑍 ) ) ) |
| 21 |
20
|
biimpa |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 1 ‘ 𝑥 ) ≠ 0 ) → 𝑥 ∈ ( Unit ‘ 𝑍 ) ) |
| 22 |
1 2 3 16 17 21
|
dchr1 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 1 ‘ 𝑥 ) ≠ 0 ) → ( 1 ‘ 𝑥 ) = 1 ) |
| 23 |
|
1re |
⊢ 1 ∈ ℝ |
| 24 |
22 23
|
eqeltrdi |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 1 ‘ 𝑥 ) ≠ 0 ) → ( 1 ‘ 𝑥 ) ∈ ℝ ) |
| 25 |
15 24
|
pm2.61dane |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 1 ‘ 𝑥 ) ∈ ℝ ) |
| 26 |
25
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ( 1 ‘ 𝑥 ) ∈ ℝ ) |
| 27 |
|
ffnfv |
⊢ ( 1 : 𝐵 ⟶ ℝ ↔ ( 1 Fn 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ( 1 ‘ 𝑥 ) ∈ ℝ ) ) |
| 28 |
12 26 27
|
sylanbrc |
⊢ ( 𝜑 → 1 : 𝐵 ⟶ ℝ ) |