Metamath Proof Explorer


Theorem dchr1

Description: Value of the principal Dirichlet character. (Contributed by Mario Carneiro, 28-Apr-2016)

Ref Expression
Hypotheses dchr1.g 𝐺 = ( DChr ‘ 𝑁 )
dchr1.z 𝑍 = ( ℤ/nℤ ‘ 𝑁 )
dchr1.o 1 = ( 0g𝐺 )
dchr1.u 𝑈 = ( Unit ‘ 𝑍 )
dchr1.n ( 𝜑𝑁 ∈ ℕ )
dchr1.a ( 𝜑𝐴𝑈 )
Assertion dchr1 ( 𝜑 → ( 1𝐴 ) = 1 )

Proof

Step Hyp Ref Expression
1 dchr1.g 𝐺 = ( DChr ‘ 𝑁 )
2 dchr1.z 𝑍 = ( ℤ/nℤ ‘ 𝑁 )
3 dchr1.o 1 = ( 0g𝐺 )
4 dchr1.u 𝑈 = ( Unit ‘ 𝑍 )
5 dchr1.n ( 𝜑𝑁 ∈ ℕ )
6 dchr1.a ( 𝜑𝐴𝑈 )
7 eqid ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 )
8 eqid ( Base ‘ 𝑍 ) = ( Base ‘ 𝑍 )
9 eqid ( 𝑘 ∈ ( Base ‘ 𝑍 ) ↦ if ( 𝑘𝑈 , 1 , 0 ) ) = ( 𝑘 ∈ ( Base ‘ 𝑍 ) ↦ if ( 𝑘𝑈 , 1 , 0 ) )
10 1 2 7 8 4 9 5 dchr1cl ( 𝜑 → ( 𝑘 ∈ ( Base ‘ 𝑍 ) ↦ if ( 𝑘𝑈 , 1 , 0 ) ) ∈ ( Base ‘ 𝐺 ) )
11 eleq1w ( 𝑘 = 𝑥 → ( 𝑘𝑈𝑥𝑈 ) )
12 11 ifbid ( 𝑘 = 𝑥 → if ( 𝑘𝑈 , 1 , 0 ) = if ( 𝑥𝑈 , 1 , 0 ) )
13 12 cbvmptv ( 𝑘 ∈ ( Base ‘ 𝑍 ) ↦ if ( 𝑘𝑈 , 1 , 0 ) ) = ( 𝑥 ∈ ( Base ‘ 𝑍 ) ↦ if ( 𝑥𝑈 , 1 , 0 ) )
14 eqid ( +g𝐺 ) = ( +g𝐺 )
15 1 2 7 8 4 13 14 10 dchrmulid2 ( 𝜑 → ( ( 𝑘 ∈ ( Base ‘ 𝑍 ) ↦ if ( 𝑘𝑈 , 1 , 0 ) ) ( +g𝐺 ) ( 𝑘 ∈ ( Base ‘ 𝑍 ) ↦ if ( 𝑘𝑈 , 1 , 0 ) ) ) = ( 𝑘 ∈ ( Base ‘ 𝑍 ) ↦ if ( 𝑘𝑈 , 1 , 0 ) ) )
16 1 dchrabl ( 𝑁 ∈ ℕ → 𝐺 ∈ Abel )
17 ablgrp ( 𝐺 ∈ Abel → 𝐺 ∈ Grp )
18 7 14 3 isgrpid2 ( 𝐺 ∈ Grp → ( ( ( 𝑘 ∈ ( Base ‘ 𝑍 ) ↦ if ( 𝑘𝑈 , 1 , 0 ) ) ∈ ( Base ‘ 𝐺 ) ∧ ( ( 𝑘 ∈ ( Base ‘ 𝑍 ) ↦ if ( 𝑘𝑈 , 1 , 0 ) ) ( +g𝐺 ) ( 𝑘 ∈ ( Base ‘ 𝑍 ) ↦ if ( 𝑘𝑈 , 1 , 0 ) ) ) = ( 𝑘 ∈ ( Base ‘ 𝑍 ) ↦ if ( 𝑘𝑈 , 1 , 0 ) ) ) ↔ 1 = ( 𝑘 ∈ ( Base ‘ 𝑍 ) ↦ if ( 𝑘𝑈 , 1 , 0 ) ) ) )
19 5 16 17 18 4syl ( 𝜑 → ( ( ( 𝑘 ∈ ( Base ‘ 𝑍 ) ↦ if ( 𝑘𝑈 , 1 , 0 ) ) ∈ ( Base ‘ 𝐺 ) ∧ ( ( 𝑘 ∈ ( Base ‘ 𝑍 ) ↦ if ( 𝑘𝑈 , 1 , 0 ) ) ( +g𝐺 ) ( 𝑘 ∈ ( Base ‘ 𝑍 ) ↦ if ( 𝑘𝑈 , 1 , 0 ) ) ) = ( 𝑘 ∈ ( Base ‘ 𝑍 ) ↦ if ( 𝑘𝑈 , 1 , 0 ) ) ) ↔ 1 = ( 𝑘 ∈ ( Base ‘ 𝑍 ) ↦ if ( 𝑘𝑈 , 1 , 0 ) ) ) )
20 10 15 19 mpbi2and ( 𝜑1 = ( 𝑘 ∈ ( Base ‘ 𝑍 ) ↦ if ( 𝑘𝑈 , 1 , 0 ) ) )
21 simpr ( ( 𝜑𝑘 = 𝐴 ) → 𝑘 = 𝐴 )
22 6 adantr ( ( 𝜑𝑘 = 𝐴 ) → 𝐴𝑈 )
23 21 22 eqeltrd ( ( 𝜑𝑘 = 𝐴 ) → 𝑘𝑈 )
24 23 iftrued ( ( 𝜑𝑘 = 𝐴 ) → if ( 𝑘𝑈 , 1 , 0 ) = 1 )
25 8 4 unitss 𝑈 ⊆ ( Base ‘ 𝑍 )
26 25 6 sseldi ( 𝜑𝐴 ∈ ( Base ‘ 𝑍 ) )
27 1cnd ( 𝜑 → 1 ∈ ℂ )
28 20 24 26 27 fvmptd ( 𝜑 → ( 1𝐴 ) = 1 )