| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dchr1.g |
⊢ 𝐺 = ( DChr ‘ 𝑁 ) |
| 2 |
|
dchr1.z |
⊢ 𝑍 = ( ℤ/nℤ ‘ 𝑁 ) |
| 3 |
|
dchr1.o |
⊢ 1 = ( 0g ‘ 𝐺 ) |
| 4 |
|
dchr1.u |
⊢ 𝑈 = ( Unit ‘ 𝑍 ) |
| 5 |
|
dchr1.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
| 6 |
|
dchr1.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑈 ) |
| 7 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
| 8 |
|
eqid |
⊢ ( Base ‘ 𝑍 ) = ( Base ‘ 𝑍 ) |
| 9 |
|
eqid |
⊢ ( 𝑘 ∈ ( Base ‘ 𝑍 ) ↦ if ( 𝑘 ∈ 𝑈 , 1 , 0 ) ) = ( 𝑘 ∈ ( Base ‘ 𝑍 ) ↦ if ( 𝑘 ∈ 𝑈 , 1 , 0 ) ) |
| 10 |
1 2 7 8 4 9 5
|
dchr1cl |
⊢ ( 𝜑 → ( 𝑘 ∈ ( Base ‘ 𝑍 ) ↦ if ( 𝑘 ∈ 𝑈 , 1 , 0 ) ) ∈ ( Base ‘ 𝐺 ) ) |
| 11 |
|
eleq1w |
⊢ ( 𝑘 = 𝑥 → ( 𝑘 ∈ 𝑈 ↔ 𝑥 ∈ 𝑈 ) ) |
| 12 |
11
|
ifbid |
⊢ ( 𝑘 = 𝑥 → if ( 𝑘 ∈ 𝑈 , 1 , 0 ) = if ( 𝑥 ∈ 𝑈 , 1 , 0 ) ) |
| 13 |
12
|
cbvmptv |
⊢ ( 𝑘 ∈ ( Base ‘ 𝑍 ) ↦ if ( 𝑘 ∈ 𝑈 , 1 , 0 ) ) = ( 𝑥 ∈ ( Base ‘ 𝑍 ) ↦ if ( 𝑥 ∈ 𝑈 , 1 , 0 ) ) |
| 14 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
| 15 |
1 2 7 8 4 13 14 10
|
dchrmullid |
⊢ ( 𝜑 → ( ( 𝑘 ∈ ( Base ‘ 𝑍 ) ↦ if ( 𝑘 ∈ 𝑈 , 1 , 0 ) ) ( +g ‘ 𝐺 ) ( 𝑘 ∈ ( Base ‘ 𝑍 ) ↦ if ( 𝑘 ∈ 𝑈 , 1 , 0 ) ) ) = ( 𝑘 ∈ ( Base ‘ 𝑍 ) ↦ if ( 𝑘 ∈ 𝑈 , 1 , 0 ) ) ) |
| 16 |
1
|
dchrabl |
⊢ ( 𝑁 ∈ ℕ → 𝐺 ∈ Abel ) |
| 17 |
|
ablgrp |
⊢ ( 𝐺 ∈ Abel → 𝐺 ∈ Grp ) |
| 18 |
7 14 3
|
isgrpid2 |
⊢ ( 𝐺 ∈ Grp → ( ( ( 𝑘 ∈ ( Base ‘ 𝑍 ) ↦ if ( 𝑘 ∈ 𝑈 , 1 , 0 ) ) ∈ ( Base ‘ 𝐺 ) ∧ ( ( 𝑘 ∈ ( Base ‘ 𝑍 ) ↦ if ( 𝑘 ∈ 𝑈 , 1 , 0 ) ) ( +g ‘ 𝐺 ) ( 𝑘 ∈ ( Base ‘ 𝑍 ) ↦ if ( 𝑘 ∈ 𝑈 , 1 , 0 ) ) ) = ( 𝑘 ∈ ( Base ‘ 𝑍 ) ↦ if ( 𝑘 ∈ 𝑈 , 1 , 0 ) ) ) ↔ 1 = ( 𝑘 ∈ ( Base ‘ 𝑍 ) ↦ if ( 𝑘 ∈ 𝑈 , 1 , 0 ) ) ) ) |
| 19 |
5 16 17 18
|
4syl |
⊢ ( 𝜑 → ( ( ( 𝑘 ∈ ( Base ‘ 𝑍 ) ↦ if ( 𝑘 ∈ 𝑈 , 1 , 0 ) ) ∈ ( Base ‘ 𝐺 ) ∧ ( ( 𝑘 ∈ ( Base ‘ 𝑍 ) ↦ if ( 𝑘 ∈ 𝑈 , 1 , 0 ) ) ( +g ‘ 𝐺 ) ( 𝑘 ∈ ( Base ‘ 𝑍 ) ↦ if ( 𝑘 ∈ 𝑈 , 1 , 0 ) ) ) = ( 𝑘 ∈ ( Base ‘ 𝑍 ) ↦ if ( 𝑘 ∈ 𝑈 , 1 , 0 ) ) ) ↔ 1 = ( 𝑘 ∈ ( Base ‘ 𝑍 ) ↦ if ( 𝑘 ∈ 𝑈 , 1 , 0 ) ) ) ) |
| 20 |
10 15 19
|
mpbi2and |
⊢ ( 𝜑 → 1 = ( 𝑘 ∈ ( Base ‘ 𝑍 ) ↦ if ( 𝑘 ∈ 𝑈 , 1 , 0 ) ) ) |
| 21 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑘 = 𝐴 ) → 𝑘 = 𝐴 ) |
| 22 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 = 𝐴 ) → 𝐴 ∈ 𝑈 ) |
| 23 |
21 22
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑘 = 𝐴 ) → 𝑘 ∈ 𝑈 ) |
| 24 |
23
|
iftrued |
⊢ ( ( 𝜑 ∧ 𝑘 = 𝐴 ) → if ( 𝑘 ∈ 𝑈 , 1 , 0 ) = 1 ) |
| 25 |
8 4
|
unitss |
⊢ 𝑈 ⊆ ( Base ‘ 𝑍 ) |
| 26 |
25 6
|
sselid |
⊢ ( 𝜑 → 𝐴 ∈ ( Base ‘ 𝑍 ) ) |
| 27 |
|
1cnd |
⊢ ( 𝜑 → 1 ∈ ℂ ) |
| 28 |
20 24 26 27
|
fvmptd |
⊢ ( 𝜑 → ( 1 ‘ 𝐴 ) = 1 ) |