Metamath Proof Explorer


Theorem dchr1re

Description: The principal Dirichlet character is a real character. (Contributed by Mario Carneiro, 2-May-2016)

Ref Expression
Hypotheses dchr1re.g G=DChrN
dchr1re.z Z=/N
dchr1re.o 1˙=0G
dchr1re.b B=BaseZ
dchr1re.n φN
Assertion dchr1re φ1˙:B

Proof

Step Hyp Ref Expression
1 dchr1re.g G=DChrN
2 dchr1re.z Z=/N
3 dchr1re.o 1˙=0G
4 dchr1re.b B=BaseZ
5 dchr1re.n φN
6 eqid BaseG=BaseG
7 1 dchrabl NGAbel
8 ablgrp GAbelGGrp
9 6 3 grpidcl GGrp1˙BaseG
10 5 7 8 9 4syl φ1˙BaseG
11 1 2 6 4 10 dchrf φ1˙:B
12 11 ffnd φ1˙FnB
13 simpr φxB1˙x=01˙x=0
14 0re 0
15 13 14 eqeltrdi φxB1˙x=01˙x
16 eqid UnitZ=UnitZ
17 5 ad2antrr φxB1˙x0N
18 10 adantr φxB1˙BaseG
19 simpr φxBxB
20 1 2 6 4 16 18 19 dchrn0 φxB1˙x0xUnitZ
21 20 biimpa φxB1˙x0xUnitZ
22 1 2 3 16 17 21 dchr1 φxB1˙x01˙x=1
23 1re 1
24 22 23 eqeltrdi φxB1˙x01˙x
25 15 24 pm2.61dane φxB1˙x
26 25 ralrimiva φxB1˙x
27 ffnfv 1˙:B1˙FnBxB1˙x
28 12 26 27 sylanbrc φ1˙:B