Metamath Proof Explorer


Theorem dchrptlem1

Description: Lemma for dchrpt . (Contributed by Mario Carneiro, 28-Apr-2016)

Ref Expression
Hypotheses dchrpt.g G = DChr N
dchrpt.z Z = /N
dchrpt.d D = Base G
dchrpt.b B = Base Z
dchrpt.1 1 ˙ = 1 Z
dchrpt.n φ N
dchrpt.n1 φ A 1 ˙
dchrpt.u U = Unit Z
dchrpt.h H = mulGrp Z 𝑠 U
dchrpt.m · ˙ = H
dchrpt.s S = k dom W ran n n · ˙ W k
dchrpt.au φ A U
dchrpt.w φ W Word U
dchrpt.2 φ H dom DProd S
dchrpt.3 φ H DProd S = U
dchrpt.p P = H dProj S
dchrpt.o O = od H
dchrpt.t T = 1 2 O W I
dchrpt.i φ I dom W
dchrpt.4 φ P I A 1 ˙
dchrpt.5 X = u U ι h | m P I u = m · ˙ W I h = T m
Assertion dchrptlem1 φ C U M P I C = M · ˙ W I X C = T M

Proof

Step Hyp Ref Expression
1 dchrpt.g G = DChr N
2 dchrpt.z Z = /N
3 dchrpt.d D = Base G
4 dchrpt.b B = Base Z
5 dchrpt.1 1 ˙ = 1 Z
6 dchrpt.n φ N
7 dchrpt.n1 φ A 1 ˙
8 dchrpt.u U = Unit Z
9 dchrpt.h H = mulGrp Z 𝑠 U
10 dchrpt.m · ˙ = H
11 dchrpt.s S = k dom W ran n n · ˙ W k
12 dchrpt.au φ A U
13 dchrpt.w φ W Word U
14 dchrpt.2 φ H dom DProd S
15 dchrpt.3 φ H DProd S = U
16 dchrpt.p P = H dProj S
17 dchrpt.o O = od H
18 dchrpt.t T = 1 2 O W I
19 dchrpt.i φ I dom W
20 dchrpt.4 φ P I A 1 ˙
21 dchrpt.5 X = u U ι h | m P I u = m · ˙ W I h = T m
22 fveqeq2 u = C P I u = m · ˙ W I P I C = m · ˙ W I
23 22 anbi1d u = C P I u = m · ˙ W I h = T m P I C = m · ˙ W I h = T m
24 23 rexbidv u = C m P I u = m · ˙ W I h = T m m P I C = m · ˙ W I h = T m
25 24 iotabidv u = C ι h | m P I u = m · ˙ W I h = T m = ι h | m P I C = m · ˙ W I h = T m
26 iotaex ι h | m P I u = m · ˙ W I h = T m V
27 25 21 26 fvmpt3i C U X C = ι h | m P I C = m · ˙ W I h = T m
28 27 ad2antlr φ C U M P I C = M · ˙ W I X C = ι h | m P I C = m · ˙ W I h = T m
29 ovex T M V
30 simpr φ C U M P I C = M · ˙ W I m P I C = m · ˙ W I P I C = m · ˙ W I
31 simpllr φ C U M P I C = M · ˙ W I m P I C = m · ˙ W I M P I C = M · ˙ W I
32 31 simprd φ C U M P I C = M · ˙ W I m P I C = m · ˙ W I P I C = M · ˙ W I
33 30 32 eqtr3d φ C U M P I C = M · ˙ W I m P I C = m · ˙ W I m · ˙ W I = M · ˙ W I
34 simp-4l φ C U M P I C = M · ˙ W I m P I C = m · ˙ W I φ
35 simplr φ C U M P I C = M · ˙ W I m P I C = m · ˙ W I m
36 31 simpld φ C U M P I C = M · ˙ W I m P I C = m · ˙ W I M
37 6 nnnn0d φ N 0
38 2 zncrng N 0 Z CRing
39 crngring Z CRing Z Ring
40 8 9 unitgrp Z Ring H Grp
41 37 38 39 40 4syl φ H Grp
42 41 adantr φ m M H Grp
43 wrdf W Word U W : 0 ..^ W U
44 13 43 syl φ W : 0 ..^ W U
45 44 fdmd φ dom W = 0 ..^ W
46 19 45 eleqtrd φ I 0 ..^ W
47 44 46 ffvelrnd φ W I U
48 47 adantr φ m M W I U
49 simprl φ m M m
50 simprr φ m M M
51 8 9 unitgrpbas U = Base H
52 eqid 0 H = 0 H
53 51 17 10 52 odcong H Grp W I U m M O W I m M m · ˙ W I = M · ˙ W I
54 42 48 49 50 53 syl112anc φ m M O W I m M m · ˙ W I = M · ˙ W I
55 neg1cn 1
56 2re 2
57 2 4 znfi N B Fin
58 6 57 syl φ B Fin
59 4 8 unitss U B
60 ssfi B Fin U B U Fin
61 58 59 60 sylancl φ U Fin
62 51 17 odcl2 H Grp U Fin W I U O W I
63 41 61 47 62 syl3anc φ O W I
64 63 ad2antrr φ m M O W I m M O W I
65 nndivre 2 O W I 2 O W I
66 56 64 65 sylancr φ m M O W I m M 2 O W I
67 66 recnd φ m M O W I m M 2 O W I
68 cxpcl 1 2 O W I 1 2 O W I
69 55 67 68 sylancr φ m M O W I m M 1 2 O W I
70 18 69 eqeltrid φ m M O W I m M T
71 55 a1i φ m M O W I m M 1
72 neg1ne0 1 0
73 72 a1i φ m M O W I m M 1 0
74 71 73 67 cxpne0d φ m M O W I m M 1 2 O W I 0
75 18 neeq1i T 0 1 2 O W I 0
76 74 75 sylibr φ m M O W I m M T 0
77 zsubcl m M m M
78 77 ad2antlr φ m M O W I m M m M
79 50 adantr φ m M O W I m M M
80 expaddz T T 0 m M M T m - M + M = T m M T M
81 70 76 78 79 80 syl22anc φ m M O W I m M T m - M + M = T m M T M
82 49 adantr φ m M O W I m M m
83 82 zcnd φ m M O W I m M m
84 79 zcnd φ m M O W I m M M
85 83 84 npcand φ m M O W I m M m - M + M = m
86 85 oveq2d φ m M O W I m M T m - M + M = T m
87 18 oveq1i T m M = -1 2 O W I m M
88 root1eq1 O W I m M -1 2 O W I m M = 1 O W I m M
89 63 77 88 syl2an φ m M -1 2 O W I m M = 1 O W I m M
90 89 biimpar φ m M O W I m M -1 2 O W I m M = 1
91 87 90 eqtrid φ m M O W I m M T m M = 1
92 91 oveq1d φ m M O W I m M T m M T M = 1 T M
93 70 76 79 expclzd φ m M O W I m M T M
94 93 mulid2d φ m M O W I m M 1 T M = T M
95 92 94 eqtrd φ m M O W I m M T m M T M = T M
96 81 86 95 3eqtr3d φ m M O W I m M T m = T M
97 96 ex φ m M O W I m M T m = T M
98 54 97 sylbird φ m M m · ˙ W I = M · ˙ W I T m = T M
99 34 35 36 98 syl12anc φ C U M P I C = M · ˙ W I m P I C = m · ˙ W I m · ˙ W I = M · ˙ W I T m = T M
100 33 99 mpd φ C U M P I C = M · ˙ W I m P I C = m · ˙ W I T m = T M
101 100 eqeq2d φ C U M P I C = M · ˙ W I m P I C = m · ˙ W I h = T m h = T M
102 101 biimpd φ C U M P I C = M · ˙ W I m P I C = m · ˙ W I h = T m h = T M
103 102 expimpd φ C U M P I C = M · ˙ W I m P I C = m · ˙ W I h = T m h = T M
104 103 rexlimdva φ C U M P I C = M · ˙ W I m P I C = m · ˙ W I h = T m h = T M
105 oveq1 m = M m · ˙ W I = M · ˙ W I
106 105 eqeq2d m = M P I C = m · ˙ W I P I C = M · ˙ W I
107 oveq2 m = M T m = T M
108 107 eqeq2d m = M h = T m h = T M
109 106 108 anbi12d m = M P I C = m · ˙ W I h = T m P I C = M · ˙ W I h = T M
110 109 rspcev M P I C = M · ˙ W I h = T M m P I C = m · ˙ W I h = T m
111 110 expr M P I C = M · ˙ W I h = T M m P I C = m · ˙ W I h = T m
112 111 adantl φ C U M P I C = M · ˙ W I h = T M m P I C = m · ˙ W I h = T m
113 104 112 impbid φ C U M P I C = M · ˙ W I m P I C = m · ˙ W I h = T m h = T M
114 113 adantr φ C U M P I C = M · ˙ W I T M V m P I C = m · ˙ W I h = T m h = T M
115 114 iota5 φ C U M P I C = M · ˙ W I T M V ι h | m P I C = m · ˙ W I h = T m = T M
116 29 115 mpan2 φ C U M P I C = M · ˙ W I ι h | m P I C = m · ˙ W I h = T m = T M
117 28 116 eqtrd φ C U M P I C = M · ˙ W I X C = T M