| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dchrpt.g |
|
| 2 |
|
dchrpt.z |
|
| 3 |
|
dchrpt.d |
|
| 4 |
|
dchrpt.b |
|
| 5 |
|
dchrpt.1 |
|
| 6 |
|
dchrpt.n |
|
| 7 |
|
dchrpt.n1 |
|
| 8 |
|
dchrpt.u |
|
| 9 |
|
dchrpt.h |
|
| 10 |
|
dchrpt.m |
|
| 11 |
|
dchrpt.s |
|
| 12 |
|
dchrpt.au |
|
| 13 |
|
dchrpt.w |
|
| 14 |
|
dchrpt.2 |
|
| 15 |
|
dchrpt.3 |
|
| 16 |
|
dchrpt.p |
|
| 17 |
|
dchrpt.o |
|
| 18 |
|
dchrpt.t |
|
| 19 |
|
dchrpt.i |
|
| 20 |
|
dchrpt.4 |
|
| 21 |
|
dchrpt.5 |
|
| 22 |
|
fveqeq2 |
|
| 23 |
22
|
anbi1d |
|
| 24 |
23
|
rexbidv |
|
| 25 |
24
|
iotabidv |
|
| 26 |
|
iotaex |
|
| 27 |
25 21 26
|
fvmpt3i |
|
| 28 |
27
|
ad2antlr |
|
| 29 |
|
ovex |
|
| 30 |
|
simpr |
|
| 31 |
|
simpllr |
|
| 32 |
31
|
simprd |
|
| 33 |
30 32
|
eqtr3d |
|
| 34 |
|
simp-4l |
|
| 35 |
|
simplr |
|
| 36 |
31
|
simpld |
|
| 37 |
6
|
nnnn0d |
|
| 38 |
2
|
zncrng |
|
| 39 |
|
crngring |
|
| 40 |
8 9
|
unitgrp |
|
| 41 |
37 38 39 40
|
4syl |
|
| 42 |
41
|
adantr |
|
| 43 |
|
wrdf |
|
| 44 |
13 43
|
syl |
|
| 45 |
44
|
fdmd |
|
| 46 |
19 45
|
eleqtrd |
|
| 47 |
44 46
|
ffvelcdmd |
|
| 48 |
47
|
adantr |
|
| 49 |
|
simprl |
|
| 50 |
|
simprr |
|
| 51 |
8 9
|
unitgrpbas |
|
| 52 |
|
eqid |
|
| 53 |
51 17 10 52
|
odcong |
|
| 54 |
42 48 49 50 53
|
syl112anc |
|
| 55 |
|
neg1cn |
|
| 56 |
|
2re |
|
| 57 |
2 4
|
znfi |
|
| 58 |
6 57
|
syl |
|
| 59 |
4 8
|
unitss |
|
| 60 |
|
ssfi |
|
| 61 |
58 59 60
|
sylancl |
|
| 62 |
51 17
|
odcl2 |
|
| 63 |
41 61 47 62
|
syl3anc |
|
| 64 |
63
|
ad2antrr |
|
| 65 |
|
nndivre |
|
| 66 |
56 64 65
|
sylancr |
|
| 67 |
66
|
recnd |
|
| 68 |
|
cxpcl |
|
| 69 |
55 67 68
|
sylancr |
|
| 70 |
18 69
|
eqeltrid |
|
| 71 |
55
|
a1i |
|
| 72 |
|
neg1ne0 |
|
| 73 |
72
|
a1i |
|
| 74 |
71 73 67
|
cxpne0d |
|
| 75 |
18
|
neeq1i |
|
| 76 |
74 75
|
sylibr |
|
| 77 |
|
zsubcl |
|
| 78 |
77
|
ad2antlr |
|
| 79 |
50
|
adantr |
|
| 80 |
|
expaddz |
|
| 81 |
70 76 78 79 80
|
syl22anc |
|
| 82 |
49
|
adantr |
|
| 83 |
82
|
zcnd |
|
| 84 |
79
|
zcnd |
|
| 85 |
83 84
|
npcand |
|
| 86 |
85
|
oveq2d |
|
| 87 |
18
|
oveq1i |
|
| 88 |
|
root1eq1 |
|
| 89 |
63 77 88
|
syl2an |
|
| 90 |
89
|
biimpar |
|
| 91 |
87 90
|
eqtrid |
|
| 92 |
91
|
oveq1d |
|
| 93 |
70 76 79
|
expclzd |
|
| 94 |
93
|
mullidd |
|
| 95 |
92 94
|
eqtrd |
|
| 96 |
81 86 95
|
3eqtr3d |
|
| 97 |
96
|
ex |
|
| 98 |
54 97
|
sylbird |
|
| 99 |
34 35 36 98
|
syl12anc |
|
| 100 |
33 99
|
mpd |
|
| 101 |
100
|
eqeq2d |
|
| 102 |
101
|
biimpd |
|
| 103 |
102
|
expimpd |
|
| 104 |
103
|
rexlimdva |
|
| 105 |
|
oveq1 |
|
| 106 |
105
|
eqeq2d |
|
| 107 |
|
oveq2 |
|
| 108 |
107
|
eqeq2d |
|
| 109 |
106 108
|
anbi12d |
|
| 110 |
109
|
rspcev |
|
| 111 |
110
|
expr |
|
| 112 |
111
|
adantl |
|
| 113 |
104 112
|
impbid |
|
| 114 |
113
|
adantr |
|
| 115 |
114
|
iota5 |
|
| 116 |
29 115
|
mpan2 |
|
| 117 |
28 116
|
eqtrd |
|