Metamath Proof Explorer


Theorem znfi

Description: The Z/nZ structure is a finite ring. (Contributed by Mario Carneiro, 2-May-2016)

Ref Expression
Hypotheses zntos.y Y=/N
znhash.1 B=BaseY
Assertion znfi NBFin

Proof

Step Hyp Ref Expression
1 zntos.y Y=/N
2 znhash.1 B=BaseY
3 1 2 znhash NB=N
4 nnnn0 NN0
5 3 4 eqeltrd NB0
6 2 fvexi BV
7 hashclb BVBFinB0
8 6 7 ax-mp BFinB0
9 5 8 sylibr NBFin