| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dchrpt.g |
|- G = ( DChr ` N ) |
| 2 |
|
dchrpt.z |
|- Z = ( Z/nZ ` N ) |
| 3 |
|
dchrpt.d |
|- D = ( Base ` G ) |
| 4 |
|
dchrpt.b |
|- B = ( Base ` Z ) |
| 5 |
|
dchrpt.1 |
|- .1. = ( 1r ` Z ) |
| 6 |
|
dchrpt.n |
|- ( ph -> N e. NN ) |
| 7 |
|
dchrpt.n1 |
|- ( ph -> A =/= .1. ) |
| 8 |
|
dchrpt.u |
|- U = ( Unit ` Z ) |
| 9 |
|
dchrpt.h |
|- H = ( ( mulGrp ` Z ) |`s U ) |
| 10 |
|
dchrpt.m |
|- .x. = ( .g ` H ) |
| 11 |
|
dchrpt.s |
|- S = ( k e. dom W |-> ran ( n e. ZZ |-> ( n .x. ( W ` k ) ) ) ) |
| 12 |
|
dchrpt.au |
|- ( ph -> A e. U ) |
| 13 |
|
dchrpt.w |
|- ( ph -> W e. Word U ) |
| 14 |
|
dchrpt.2 |
|- ( ph -> H dom DProd S ) |
| 15 |
|
dchrpt.3 |
|- ( ph -> ( H DProd S ) = U ) |
| 16 |
|
dchrpt.p |
|- P = ( H dProj S ) |
| 17 |
|
dchrpt.o |
|- O = ( od ` H ) |
| 18 |
|
dchrpt.t |
|- T = ( -u 1 ^c ( 2 / ( O ` ( W ` I ) ) ) ) |
| 19 |
|
dchrpt.i |
|- ( ph -> I e. dom W ) |
| 20 |
|
dchrpt.4 |
|- ( ph -> ( ( P ` I ) ` A ) =/= .1. ) |
| 21 |
|
dchrpt.5 |
|- X = ( u e. U |-> ( iota h E. m e. ZZ ( ( ( P ` I ) ` u ) = ( m .x. ( W ` I ) ) /\ h = ( T ^ m ) ) ) ) |
| 22 |
|
fveqeq2 |
|- ( u = C -> ( ( ( P ` I ) ` u ) = ( m .x. ( W ` I ) ) <-> ( ( P ` I ) ` C ) = ( m .x. ( W ` I ) ) ) ) |
| 23 |
22
|
anbi1d |
|- ( u = C -> ( ( ( ( P ` I ) ` u ) = ( m .x. ( W ` I ) ) /\ h = ( T ^ m ) ) <-> ( ( ( P ` I ) ` C ) = ( m .x. ( W ` I ) ) /\ h = ( T ^ m ) ) ) ) |
| 24 |
23
|
rexbidv |
|- ( u = C -> ( E. m e. ZZ ( ( ( P ` I ) ` u ) = ( m .x. ( W ` I ) ) /\ h = ( T ^ m ) ) <-> E. m e. ZZ ( ( ( P ` I ) ` C ) = ( m .x. ( W ` I ) ) /\ h = ( T ^ m ) ) ) ) |
| 25 |
24
|
iotabidv |
|- ( u = C -> ( iota h E. m e. ZZ ( ( ( P ` I ) ` u ) = ( m .x. ( W ` I ) ) /\ h = ( T ^ m ) ) ) = ( iota h E. m e. ZZ ( ( ( P ` I ) ` C ) = ( m .x. ( W ` I ) ) /\ h = ( T ^ m ) ) ) ) |
| 26 |
|
iotaex |
|- ( iota h E. m e. ZZ ( ( ( P ` I ) ` u ) = ( m .x. ( W ` I ) ) /\ h = ( T ^ m ) ) ) e. _V |
| 27 |
25 21 26
|
fvmpt3i |
|- ( C e. U -> ( X ` C ) = ( iota h E. m e. ZZ ( ( ( P ` I ) ` C ) = ( m .x. ( W ` I ) ) /\ h = ( T ^ m ) ) ) ) |
| 28 |
27
|
ad2antlr |
|- ( ( ( ph /\ C e. U ) /\ ( M e. ZZ /\ ( ( P ` I ) ` C ) = ( M .x. ( W ` I ) ) ) ) -> ( X ` C ) = ( iota h E. m e. ZZ ( ( ( P ` I ) ` C ) = ( m .x. ( W ` I ) ) /\ h = ( T ^ m ) ) ) ) |
| 29 |
|
ovex |
|- ( T ^ M ) e. _V |
| 30 |
|
simpr |
|- ( ( ( ( ( ph /\ C e. U ) /\ ( M e. ZZ /\ ( ( P ` I ) ` C ) = ( M .x. ( W ` I ) ) ) ) /\ m e. ZZ ) /\ ( ( P ` I ) ` C ) = ( m .x. ( W ` I ) ) ) -> ( ( P ` I ) ` C ) = ( m .x. ( W ` I ) ) ) |
| 31 |
|
simpllr |
|- ( ( ( ( ( ph /\ C e. U ) /\ ( M e. ZZ /\ ( ( P ` I ) ` C ) = ( M .x. ( W ` I ) ) ) ) /\ m e. ZZ ) /\ ( ( P ` I ) ` C ) = ( m .x. ( W ` I ) ) ) -> ( M e. ZZ /\ ( ( P ` I ) ` C ) = ( M .x. ( W ` I ) ) ) ) |
| 32 |
31
|
simprd |
|- ( ( ( ( ( ph /\ C e. U ) /\ ( M e. ZZ /\ ( ( P ` I ) ` C ) = ( M .x. ( W ` I ) ) ) ) /\ m e. ZZ ) /\ ( ( P ` I ) ` C ) = ( m .x. ( W ` I ) ) ) -> ( ( P ` I ) ` C ) = ( M .x. ( W ` I ) ) ) |
| 33 |
30 32
|
eqtr3d |
|- ( ( ( ( ( ph /\ C e. U ) /\ ( M e. ZZ /\ ( ( P ` I ) ` C ) = ( M .x. ( W ` I ) ) ) ) /\ m e. ZZ ) /\ ( ( P ` I ) ` C ) = ( m .x. ( W ` I ) ) ) -> ( m .x. ( W ` I ) ) = ( M .x. ( W ` I ) ) ) |
| 34 |
|
simp-4l |
|- ( ( ( ( ( ph /\ C e. U ) /\ ( M e. ZZ /\ ( ( P ` I ) ` C ) = ( M .x. ( W ` I ) ) ) ) /\ m e. ZZ ) /\ ( ( P ` I ) ` C ) = ( m .x. ( W ` I ) ) ) -> ph ) |
| 35 |
|
simplr |
|- ( ( ( ( ( ph /\ C e. U ) /\ ( M e. ZZ /\ ( ( P ` I ) ` C ) = ( M .x. ( W ` I ) ) ) ) /\ m e. ZZ ) /\ ( ( P ` I ) ` C ) = ( m .x. ( W ` I ) ) ) -> m e. ZZ ) |
| 36 |
31
|
simpld |
|- ( ( ( ( ( ph /\ C e. U ) /\ ( M e. ZZ /\ ( ( P ` I ) ` C ) = ( M .x. ( W ` I ) ) ) ) /\ m e. ZZ ) /\ ( ( P ` I ) ` C ) = ( m .x. ( W ` I ) ) ) -> M e. ZZ ) |
| 37 |
6
|
nnnn0d |
|- ( ph -> N e. NN0 ) |
| 38 |
2
|
zncrng |
|- ( N e. NN0 -> Z e. CRing ) |
| 39 |
|
crngring |
|- ( Z e. CRing -> Z e. Ring ) |
| 40 |
8 9
|
unitgrp |
|- ( Z e. Ring -> H e. Grp ) |
| 41 |
37 38 39 40
|
4syl |
|- ( ph -> H e. Grp ) |
| 42 |
41
|
adantr |
|- ( ( ph /\ ( m e. ZZ /\ M e. ZZ ) ) -> H e. Grp ) |
| 43 |
|
wrdf |
|- ( W e. Word U -> W : ( 0 ..^ ( # ` W ) ) --> U ) |
| 44 |
13 43
|
syl |
|- ( ph -> W : ( 0 ..^ ( # ` W ) ) --> U ) |
| 45 |
44
|
fdmd |
|- ( ph -> dom W = ( 0 ..^ ( # ` W ) ) ) |
| 46 |
19 45
|
eleqtrd |
|- ( ph -> I e. ( 0 ..^ ( # ` W ) ) ) |
| 47 |
44 46
|
ffvelcdmd |
|- ( ph -> ( W ` I ) e. U ) |
| 48 |
47
|
adantr |
|- ( ( ph /\ ( m e. ZZ /\ M e. ZZ ) ) -> ( W ` I ) e. U ) |
| 49 |
|
simprl |
|- ( ( ph /\ ( m e. ZZ /\ M e. ZZ ) ) -> m e. ZZ ) |
| 50 |
|
simprr |
|- ( ( ph /\ ( m e. ZZ /\ M e. ZZ ) ) -> M e. ZZ ) |
| 51 |
8 9
|
unitgrpbas |
|- U = ( Base ` H ) |
| 52 |
|
eqid |
|- ( 0g ` H ) = ( 0g ` H ) |
| 53 |
51 17 10 52
|
odcong |
|- ( ( H e. Grp /\ ( W ` I ) e. U /\ ( m e. ZZ /\ M e. ZZ ) ) -> ( ( O ` ( W ` I ) ) || ( m - M ) <-> ( m .x. ( W ` I ) ) = ( M .x. ( W ` I ) ) ) ) |
| 54 |
42 48 49 50 53
|
syl112anc |
|- ( ( ph /\ ( m e. ZZ /\ M e. ZZ ) ) -> ( ( O ` ( W ` I ) ) || ( m - M ) <-> ( m .x. ( W ` I ) ) = ( M .x. ( W ` I ) ) ) ) |
| 55 |
|
neg1cn |
|- -u 1 e. CC |
| 56 |
|
2re |
|- 2 e. RR |
| 57 |
2 4
|
znfi |
|- ( N e. NN -> B e. Fin ) |
| 58 |
6 57
|
syl |
|- ( ph -> B e. Fin ) |
| 59 |
4 8
|
unitss |
|- U C_ B |
| 60 |
|
ssfi |
|- ( ( B e. Fin /\ U C_ B ) -> U e. Fin ) |
| 61 |
58 59 60
|
sylancl |
|- ( ph -> U e. Fin ) |
| 62 |
51 17
|
odcl2 |
|- ( ( H e. Grp /\ U e. Fin /\ ( W ` I ) e. U ) -> ( O ` ( W ` I ) ) e. NN ) |
| 63 |
41 61 47 62
|
syl3anc |
|- ( ph -> ( O ` ( W ` I ) ) e. NN ) |
| 64 |
63
|
ad2antrr |
|- ( ( ( ph /\ ( m e. ZZ /\ M e. ZZ ) ) /\ ( O ` ( W ` I ) ) || ( m - M ) ) -> ( O ` ( W ` I ) ) e. NN ) |
| 65 |
|
nndivre |
|- ( ( 2 e. RR /\ ( O ` ( W ` I ) ) e. NN ) -> ( 2 / ( O ` ( W ` I ) ) ) e. RR ) |
| 66 |
56 64 65
|
sylancr |
|- ( ( ( ph /\ ( m e. ZZ /\ M e. ZZ ) ) /\ ( O ` ( W ` I ) ) || ( m - M ) ) -> ( 2 / ( O ` ( W ` I ) ) ) e. RR ) |
| 67 |
66
|
recnd |
|- ( ( ( ph /\ ( m e. ZZ /\ M e. ZZ ) ) /\ ( O ` ( W ` I ) ) || ( m - M ) ) -> ( 2 / ( O ` ( W ` I ) ) ) e. CC ) |
| 68 |
|
cxpcl |
|- ( ( -u 1 e. CC /\ ( 2 / ( O ` ( W ` I ) ) ) e. CC ) -> ( -u 1 ^c ( 2 / ( O ` ( W ` I ) ) ) ) e. CC ) |
| 69 |
55 67 68
|
sylancr |
|- ( ( ( ph /\ ( m e. ZZ /\ M e. ZZ ) ) /\ ( O ` ( W ` I ) ) || ( m - M ) ) -> ( -u 1 ^c ( 2 / ( O ` ( W ` I ) ) ) ) e. CC ) |
| 70 |
18 69
|
eqeltrid |
|- ( ( ( ph /\ ( m e. ZZ /\ M e. ZZ ) ) /\ ( O ` ( W ` I ) ) || ( m - M ) ) -> T e. CC ) |
| 71 |
55
|
a1i |
|- ( ( ( ph /\ ( m e. ZZ /\ M e. ZZ ) ) /\ ( O ` ( W ` I ) ) || ( m - M ) ) -> -u 1 e. CC ) |
| 72 |
|
neg1ne0 |
|- -u 1 =/= 0 |
| 73 |
72
|
a1i |
|- ( ( ( ph /\ ( m e. ZZ /\ M e. ZZ ) ) /\ ( O ` ( W ` I ) ) || ( m - M ) ) -> -u 1 =/= 0 ) |
| 74 |
71 73 67
|
cxpne0d |
|- ( ( ( ph /\ ( m e. ZZ /\ M e. ZZ ) ) /\ ( O ` ( W ` I ) ) || ( m - M ) ) -> ( -u 1 ^c ( 2 / ( O ` ( W ` I ) ) ) ) =/= 0 ) |
| 75 |
18
|
neeq1i |
|- ( T =/= 0 <-> ( -u 1 ^c ( 2 / ( O ` ( W ` I ) ) ) ) =/= 0 ) |
| 76 |
74 75
|
sylibr |
|- ( ( ( ph /\ ( m e. ZZ /\ M e. ZZ ) ) /\ ( O ` ( W ` I ) ) || ( m - M ) ) -> T =/= 0 ) |
| 77 |
|
zsubcl |
|- ( ( m e. ZZ /\ M e. ZZ ) -> ( m - M ) e. ZZ ) |
| 78 |
77
|
ad2antlr |
|- ( ( ( ph /\ ( m e. ZZ /\ M e. ZZ ) ) /\ ( O ` ( W ` I ) ) || ( m - M ) ) -> ( m - M ) e. ZZ ) |
| 79 |
50
|
adantr |
|- ( ( ( ph /\ ( m e. ZZ /\ M e. ZZ ) ) /\ ( O ` ( W ` I ) ) || ( m - M ) ) -> M e. ZZ ) |
| 80 |
|
expaddz |
|- ( ( ( T e. CC /\ T =/= 0 ) /\ ( ( m - M ) e. ZZ /\ M e. ZZ ) ) -> ( T ^ ( ( m - M ) + M ) ) = ( ( T ^ ( m - M ) ) x. ( T ^ M ) ) ) |
| 81 |
70 76 78 79 80
|
syl22anc |
|- ( ( ( ph /\ ( m e. ZZ /\ M e. ZZ ) ) /\ ( O ` ( W ` I ) ) || ( m - M ) ) -> ( T ^ ( ( m - M ) + M ) ) = ( ( T ^ ( m - M ) ) x. ( T ^ M ) ) ) |
| 82 |
49
|
adantr |
|- ( ( ( ph /\ ( m e. ZZ /\ M e. ZZ ) ) /\ ( O ` ( W ` I ) ) || ( m - M ) ) -> m e. ZZ ) |
| 83 |
82
|
zcnd |
|- ( ( ( ph /\ ( m e. ZZ /\ M e. ZZ ) ) /\ ( O ` ( W ` I ) ) || ( m - M ) ) -> m e. CC ) |
| 84 |
79
|
zcnd |
|- ( ( ( ph /\ ( m e. ZZ /\ M e. ZZ ) ) /\ ( O ` ( W ` I ) ) || ( m - M ) ) -> M e. CC ) |
| 85 |
83 84
|
npcand |
|- ( ( ( ph /\ ( m e. ZZ /\ M e. ZZ ) ) /\ ( O ` ( W ` I ) ) || ( m - M ) ) -> ( ( m - M ) + M ) = m ) |
| 86 |
85
|
oveq2d |
|- ( ( ( ph /\ ( m e. ZZ /\ M e. ZZ ) ) /\ ( O ` ( W ` I ) ) || ( m - M ) ) -> ( T ^ ( ( m - M ) + M ) ) = ( T ^ m ) ) |
| 87 |
18
|
oveq1i |
|- ( T ^ ( m - M ) ) = ( ( -u 1 ^c ( 2 / ( O ` ( W ` I ) ) ) ) ^ ( m - M ) ) |
| 88 |
|
root1eq1 |
|- ( ( ( O ` ( W ` I ) ) e. NN /\ ( m - M ) e. ZZ ) -> ( ( ( -u 1 ^c ( 2 / ( O ` ( W ` I ) ) ) ) ^ ( m - M ) ) = 1 <-> ( O ` ( W ` I ) ) || ( m - M ) ) ) |
| 89 |
63 77 88
|
syl2an |
|- ( ( ph /\ ( m e. ZZ /\ M e. ZZ ) ) -> ( ( ( -u 1 ^c ( 2 / ( O ` ( W ` I ) ) ) ) ^ ( m - M ) ) = 1 <-> ( O ` ( W ` I ) ) || ( m - M ) ) ) |
| 90 |
89
|
biimpar |
|- ( ( ( ph /\ ( m e. ZZ /\ M e. ZZ ) ) /\ ( O ` ( W ` I ) ) || ( m - M ) ) -> ( ( -u 1 ^c ( 2 / ( O ` ( W ` I ) ) ) ) ^ ( m - M ) ) = 1 ) |
| 91 |
87 90
|
eqtrid |
|- ( ( ( ph /\ ( m e. ZZ /\ M e. ZZ ) ) /\ ( O ` ( W ` I ) ) || ( m - M ) ) -> ( T ^ ( m - M ) ) = 1 ) |
| 92 |
91
|
oveq1d |
|- ( ( ( ph /\ ( m e. ZZ /\ M e. ZZ ) ) /\ ( O ` ( W ` I ) ) || ( m - M ) ) -> ( ( T ^ ( m - M ) ) x. ( T ^ M ) ) = ( 1 x. ( T ^ M ) ) ) |
| 93 |
70 76 79
|
expclzd |
|- ( ( ( ph /\ ( m e. ZZ /\ M e. ZZ ) ) /\ ( O ` ( W ` I ) ) || ( m - M ) ) -> ( T ^ M ) e. CC ) |
| 94 |
93
|
mullidd |
|- ( ( ( ph /\ ( m e. ZZ /\ M e. ZZ ) ) /\ ( O ` ( W ` I ) ) || ( m - M ) ) -> ( 1 x. ( T ^ M ) ) = ( T ^ M ) ) |
| 95 |
92 94
|
eqtrd |
|- ( ( ( ph /\ ( m e. ZZ /\ M e. ZZ ) ) /\ ( O ` ( W ` I ) ) || ( m - M ) ) -> ( ( T ^ ( m - M ) ) x. ( T ^ M ) ) = ( T ^ M ) ) |
| 96 |
81 86 95
|
3eqtr3d |
|- ( ( ( ph /\ ( m e. ZZ /\ M e. ZZ ) ) /\ ( O ` ( W ` I ) ) || ( m - M ) ) -> ( T ^ m ) = ( T ^ M ) ) |
| 97 |
96
|
ex |
|- ( ( ph /\ ( m e. ZZ /\ M e. ZZ ) ) -> ( ( O ` ( W ` I ) ) || ( m - M ) -> ( T ^ m ) = ( T ^ M ) ) ) |
| 98 |
54 97
|
sylbird |
|- ( ( ph /\ ( m e. ZZ /\ M e. ZZ ) ) -> ( ( m .x. ( W ` I ) ) = ( M .x. ( W ` I ) ) -> ( T ^ m ) = ( T ^ M ) ) ) |
| 99 |
34 35 36 98
|
syl12anc |
|- ( ( ( ( ( ph /\ C e. U ) /\ ( M e. ZZ /\ ( ( P ` I ) ` C ) = ( M .x. ( W ` I ) ) ) ) /\ m e. ZZ ) /\ ( ( P ` I ) ` C ) = ( m .x. ( W ` I ) ) ) -> ( ( m .x. ( W ` I ) ) = ( M .x. ( W ` I ) ) -> ( T ^ m ) = ( T ^ M ) ) ) |
| 100 |
33 99
|
mpd |
|- ( ( ( ( ( ph /\ C e. U ) /\ ( M e. ZZ /\ ( ( P ` I ) ` C ) = ( M .x. ( W ` I ) ) ) ) /\ m e. ZZ ) /\ ( ( P ` I ) ` C ) = ( m .x. ( W ` I ) ) ) -> ( T ^ m ) = ( T ^ M ) ) |
| 101 |
100
|
eqeq2d |
|- ( ( ( ( ( ph /\ C e. U ) /\ ( M e. ZZ /\ ( ( P ` I ) ` C ) = ( M .x. ( W ` I ) ) ) ) /\ m e. ZZ ) /\ ( ( P ` I ) ` C ) = ( m .x. ( W ` I ) ) ) -> ( h = ( T ^ m ) <-> h = ( T ^ M ) ) ) |
| 102 |
101
|
biimpd |
|- ( ( ( ( ( ph /\ C e. U ) /\ ( M e. ZZ /\ ( ( P ` I ) ` C ) = ( M .x. ( W ` I ) ) ) ) /\ m e. ZZ ) /\ ( ( P ` I ) ` C ) = ( m .x. ( W ` I ) ) ) -> ( h = ( T ^ m ) -> h = ( T ^ M ) ) ) |
| 103 |
102
|
expimpd |
|- ( ( ( ( ph /\ C e. U ) /\ ( M e. ZZ /\ ( ( P ` I ) ` C ) = ( M .x. ( W ` I ) ) ) ) /\ m e. ZZ ) -> ( ( ( ( P ` I ) ` C ) = ( m .x. ( W ` I ) ) /\ h = ( T ^ m ) ) -> h = ( T ^ M ) ) ) |
| 104 |
103
|
rexlimdva |
|- ( ( ( ph /\ C e. U ) /\ ( M e. ZZ /\ ( ( P ` I ) ` C ) = ( M .x. ( W ` I ) ) ) ) -> ( E. m e. ZZ ( ( ( P ` I ) ` C ) = ( m .x. ( W ` I ) ) /\ h = ( T ^ m ) ) -> h = ( T ^ M ) ) ) |
| 105 |
|
oveq1 |
|- ( m = M -> ( m .x. ( W ` I ) ) = ( M .x. ( W ` I ) ) ) |
| 106 |
105
|
eqeq2d |
|- ( m = M -> ( ( ( P ` I ) ` C ) = ( m .x. ( W ` I ) ) <-> ( ( P ` I ) ` C ) = ( M .x. ( W ` I ) ) ) ) |
| 107 |
|
oveq2 |
|- ( m = M -> ( T ^ m ) = ( T ^ M ) ) |
| 108 |
107
|
eqeq2d |
|- ( m = M -> ( h = ( T ^ m ) <-> h = ( T ^ M ) ) ) |
| 109 |
106 108
|
anbi12d |
|- ( m = M -> ( ( ( ( P ` I ) ` C ) = ( m .x. ( W ` I ) ) /\ h = ( T ^ m ) ) <-> ( ( ( P ` I ) ` C ) = ( M .x. ( W ` I ) ) /\ h = ( T ^ M ) ) ) ) |
| 110 |
109
|
rspcev |
|- ( ( M e. ZZ /\ ( ( ( P ` I ) ` C ) = ( M .x. ( W ` I ) ) /\ h = ( T ^ M ) ) ) -> E. m e. ZZ ( ( ( P ` I ) ` C ) = ( m .x. ( W ` I ) ) /\ h = ( T ^ m ) ) ) |
| 111 |
110
|
expr |
|- ( ( M e. ZZ /\ ( ( P ` I ) ` C ) = ( M .x. ( W ` I ) ) ) -> ( h = ( T ^ M ) -> E. m e. ZZ ( ( ( P ` I ) ` C ) = ( m .x. ( W ` I ) ) /\ h = ( T ^ m ) ) ) ) |
| 112 |
111
|
adantl |
|- ( ( ( ph /\ C e. U ) /\ ( M e. ZZ /\ ( ( P ` I ) ` C ) = ( M .x. ( W ` I ) ) ) ) -> ( h = ( T ^ M ) -> E. m e. ZZ ( ( ( P ` I ) ` C ) = ( m .x. ( W ` I ) ) /\ h = ( T ^ m ) ) ) ) |
| 113 |
104 112
|
impbid |
|- ( ( ( ph /\ C e. U ) /\ ( M e. ZZ /\ ( ( P ` I ) ` C ) = ( M .x. ( W ` I ) ) ) ) -> ( E. m e. ZZ ( ( ( P ` I ) ` C ) = ( m .x. ( W ` I ) ) /\ h = ( T ^ m ) ) <-> h = ( T ^ M ) ) ) |
| 114 |
113
|
adantr |
|- ( ( ( ( ph /\ C e. U ) /\ ( M e. ZZ /\ ( ( P ` I ) ` C ) = ( M .x. ( W ` I ) ) ) ) /\ ( T ^ M ) e. _V ) -> ( E. m e. ZZ ( ( ( P ` I ) ` C ) = ( m .x. ( W ` I ) ) /\ h = ( T ^ m ) ) <-> h = ( T ^ M ) ) ) |
| 115 |
114
|
iota5 |
|- ( ( ( ( ph /\ C e. U ) /\ ( M e. ZZ /\ ( ( P ` I ) ` C ) = ( M .x. ( W ` I ) ) ) ) /\ ( T ^ M ) e. _V ) -> ( iota h E. m e. ZZ ( ( ( P ` I ) ` C ) = ( m .x. ( W ` I ) ) /\ h = ( T ^ m ) ) ) = ( T ^ M ) ) |
| 116 |
29 115
|
mpan2 |
|- ( ( ( ph /\ C e. U ) /\ ( M e. ZZ /\ ( ( P ` I ) ` C ) = ( M .x. ( W ` I ) ) ) ) -> ( iota h E. m e. ZZ ( ( ( P ` I ) ` C ) = ( m .x. ( W ` I ) ) /\ h = ( T ^ m ) ) ) = ( T ^ M ) ) |
| 117 |
28 116
|
eqtrd |
|- ( ( ( ph /\ C e. U ) /\ ( M e. ZZ /\ ( ( P ` I ) ` C ) = ( M .x. ( W ` I ) ) ) ) -> ( X ` C ) = ( T ^ M ) ) |