| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dchrpt.g |
|- G = ( DChr ` N ) |
| 2 |
|
dchrpt.z |
|- Z = ( Z/nZ ` N ) |
| 3 |
|
dchrpt.d |
|- D = ( Base ` G ) |
| 4 |
|
dchrpt.b |
|- B = ( Base ` Z ) |
| 5 |
|
dchrpt.1 |
|- .1. = ( 1r ` Z ) |
| 6 |
|
dchrpt.n |
|- ( ph -> N e. NN ) |
| 7 |
|
dchrpt.n1 |
|- ( ph -> A =/= .1. ) |
| 8 |
|
dchrpt.u |
|- U = ( Unit ` Z ) |
| 9 |
|
dchrpt.h |
|- H = ( ( mulGrp ` Z ) |`s U ) |
| 10 |
|
dchrpt.m |
|- .x. = ( .g ` H ) |
| 11 |
|
dchrpt.s |
|- S = ( k e. dom W |-> ran ( n e. ZZ |-> ( n .x. ( W ` k ) ) ) ) |
| 12 |
|
dchrpt.au |
|- ( ph -> A e. U ) |
| 13 |
|
dchrpt.w |
|- ( ph -> W e. Word U ) |
| 14 |
|
dchrpt.2 |
|- ( ph -> H dom DProd S ) |
| 15 |
|
dchrpt.3 |
|- ( ph -> ( H DProd S ) = U ) |
| 16 |
|
dchrpt.p |
|- P = ( H dProj S ) |
| 17 |
|
dchrpt.o |
|- O = ( od ` H ) |
| 18 |
|
dchrpt.t |
|- T = ( -u 1 ^c ( 2 / ( O ` ( W ` I ) ) ) ) |
| 19 |
|
dchrpt.i |
|- ( ph -> I e. dom W ) |
| 20 |
|
dchrpt.4 |
|- ( ph -> ( ( P ` I ) ` A ) =/= .1. ) |
| 21 |
|
dchrpt.5 |
|- X = ( u e. U |-> ( iota h E. m e. ZZ ( ( ( P ` I ) ` u ) = ( m .x. ( W ` I ) ) /\ h = ( T ^ m ) ) ) ) |
| 22 |
|
fveq2 |
|- ( v = x -> ( X ` v ) = ( X ` x ) ) |
| 23 |
|
fveq2 |
|- ( v = y -> ( X ` v ) = ( X ` y ) ) |
| 24 |
|
fveq2 |
|- ( v = ( x ( .r ` Z ) y ) -> ( X ` v ) = ( X ` ( x ( .r ` Z ) y ) ) ) |
| 25 |
|
fveq2 |
|- ( v = ( 1r ` Z ) -> ( X ` v ) = ( X ` ( 1r ` Z ) ) ) |
| 26 |
|
zex |
|- ZZ e. _V |
| 27 |
26
|
mptex |
|- ( n e. ZZ |-> ( n .x. ( W ` k ) ) ) e. _V |
| 28 |
27
|
rnex |
|- ran ( n e. ZZ |-> ( n .x. ( W ` k ) ) ) e. _V |
| 29 |
28 11
|
dmmpti |
|- dom S = dom W |
| 30 |
29
|
a1i |
|- ( ph -> dom S = dom W ) |
| 31 |
14 30 16 19
|
dpjf |
|- ( ph -> ( P ` I ) : ( H DProd S ) --> ( S ` I ) ) |
| 32 |
15
|
feq2d |
|- ( ph -> ( ( P ` I ) : ( H DProd S ) --> ( S ` I ) <-> ( P ` I ) : U --> ( S ` I ) ) ) |
| 33 |
31 32
|
mpbid |
|- ( ph -> ( P ` I ) : U --> ( S ` I ) ) |
| 34 |
33
|
ffvelcdmda |
|- ( ( ph /\ v e. U ) -> ( ( P ` I ) ` v ) e. ( S ` I ) ) |
| 35 |
19
|
adantr |
|- ( ( ph /\ v e. U ) -> I e. dom W ) |
| 36 |
|
oveq1 |
|- ( n = a -> ( n .x. ( W ` k ) ) = ( a .x. ( W ` k ) ) ) |
| 37 |
36
|
cbvmptv |
|- ( n e. ZZ |-> ( n .x. ( W ` k ) ) ) = ( a e. ZZ |-> ( a .x. ( W ` k ) ) ) |
| 38 |
|
fveq2 |
|- ( k = I -> ( W ` k ) = ( W ` I ) ) |
| 39 |
38
|
oveq2d |
|- ( k = I -> ( a .x. ( W ` k ) ) = ( a .x. ( W ` I ) ) ) |
| 40 |
39
|
mpteq2dv |
|- ( k = I -> ( a e. ZZ |-> ( a .x. ( W ` k ) ) ) = ( a e. ZZ |-> ( a .x. ( W ` I ) ) ) ) |
| 41 |
37 40
|
eqtrid |
|- ( k = I -> ( n e. ZZ |-> ( n .x. ( W ` k ) ) ) = ( a e. ZZ |-> ( a .x. ( W ` I ) ) ) ) |
| 42 |
41
|
rneqd |
|- ( k = I -> ran ( n e. ZZ |-> ( n .x. ( W ` k ) ) ) = ran ( a e. ZZ |-> ( a .x. ( W ` I ) ) ) ) |
| 43 |
42 11 28
|
fvmpt3i |
|- ( I e. dom W -> ( S ` I ) = ran ( a e. ZZ |-> ( a .x. ( W ` I ) ) ) ) |
| 44 |
35 43
|
syl |
|- ( ( ph /\ v e. U ) -> ( S ` I ) = ran ( a e. ZZ |-> ( a .x. ( W ` I ) ) ) ) |
| 45 |
34 44
|
eleqtrd |
|- ( ( ph /\ v e. U ) -> ( ( P ` I ) ` v ) e. ran ( a e. ZZ |-> ( a .x. ( W ` I ) ) ) ) |
| 46 |
|
eqid |
|- ( a e. ZZ |-> ( a .x. ( W ` I ) ) ) = ( a e. ZZ |-> ( a .x. ( W ` I ) ) ) |
| 47 |
|
ovex |
|- ( a .x. ( W ` I ) ) e. _V |
| 48 |
46 47
|
elrnmpti |
|- ( ( ( P ` I ) ` v ) e. ran ( a e. ZZ |-> ( a .x. ( W ` I ) ) ) <-> E. a e. ZZ ( ( P ` I ) ` v ) = ( a .x. ( W ` I ) ) ) |
| 49 |
45 48
|
sylib |
|- ( ( ph /\ v e. U ) -> E. a e. ZZ ( ( P ` I ) ` v ) = ( a .x. ( W ` I ) ) ) |
| 50 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
|
dchrptlem1 |
|- ( ( ( ph /\ v e. U ) /\ ( a e. ZZ /\ ( ( P ` I ) ` v ) = ( a .x. ( W ` I ) ) ) ) -> ( X ` v ) = ( T ^ a ) ) |
| 51 |
|
neg1cn |
|- -u 1 e. CC |
| 52 |
|
2re |
|- 2 e. RR |
| 53 |
6
|
nnnn0d |
|- ( ph -> N e. NN0 ) |
| 54 |
2
|
zncrng |
|- ( N e. NN0 -> Z e. CRing ) |
| 55 |
|
crngring |
|- ( Z e. CRing -> Z e. Ring ) |
| 56 |
53 54 55
|
3syl |
|- ( ph -> Z e. Ring ) |
| 57 |
8 9
|
unitgrp |
|- ( Z e. Ring -> H e. Grp ) |
| 58 |
56 57
|
syl |
|- ( ph -> H e. Grp ) |
| 59 |
2 4
|
znfi |
|- ( N e. NN -> B e. Fin ) |
| 60 |
6 59
|
syl |
|- ( ph -> B e. Fin ) |
| 61 |
4 8
|
unitss |
|- U C_ B |
| 62 |
|
ssfi |
|- ( ( B e. Fin /\ U C_ B ) -> U e. Fin ) |
| 63 |
60 61 62
|
sylancl |
|- ( ph -> U e. Fin ) |
| 64 |
|
wrdf |
|- ( W e. Word U -> W : ( 0 ..^ ( # ` W ) ) --> U ) |
| 65 |
13 64
|
syl |
|- ( ph -> W : ( 0 ..^ ( # ` W ) ) --> U ) |
| 66 |
65
|
fdmd |
|- ( ph -> dom W = ( 0 ..^ ( # ` W ) ) ) |
| 67 |
19 66
|
eleqtrd |
|- ( ph -> I e. ( 0 ..^ ( # ` W ) ) ) |
| 68 |
65 67
|
ffvelcdmd |
|- ( ph -> ( W ` I ) e. U ) |
| 69 |
8 9
|
unitgrpbas |
|- U = ( Base ` H ) |
| 70 |
69 17
|
odcl2 |
|- ( ( H e. Grp /\ U e. Fin /\ ( W ` I ) e. U ) -> ( O ` ( W ` I ) ) e. NN ) |
| 71 |
58 63 68 70
|
syl3anc |
|- ( ph -> ( O ` ( W ` I ) ) e. NN ) |
| 72 |
|
nndivre |
|- ( ( 2 e. RR /\ ( O ` ( W ` I ) ) e. NN ) -> ( 2 / ( O ` ( W ` I ) ) ) e. RR ) |
| 73 |
52 71 72
|
sylancr |
|- ( ph -> ( 2 / ( O ` ( W ` I ) ) ) e. RR ) |
| 74 |
73
|
recnd |
|- ( ph -> ( 2 / ( O ` ( W ` I ) ) ) e. CC ) |
| 75 |
|
cxpcl |
|- ( ( -u 1 e. CC /\ ( 2 / ( O ` ( W ` I ) ) ) e. CC ) -> ( -u 1 ^c ( 2 / ( O ` ( W ` I ) ) ) ) e. CC ) |
| 76 |
51 74 75
|
sylancr |
|- ( ph -> ( -u 1 ^c ( 2 / ( O ` ( W ` I ) ) ) ) e. CC ) |
| 77 |
18 76
|
eqeltrid |
|- ( ph -> T e. CC ) |
| 78 |
77
|
ad2antrr |
|- ( ( ( ph /\ v e. U ) /\ ( a e. ZZ /\ ( ( P ` I ) ` v ) = ( a .x. ( W ` I ) ) ) ) -> T e. CC ) |
| 79 |
51
|
a1i |
|- ( ph -> -u 1 e. CC ) |
| 80 |
|
neg1ne0 |
|- -u 1 =/= 0 |
| 81 |
80
|
a1i |
|- ( ph -> -u 1 =/= 0 ) |
| 82 |
79 81 74
|
cxpne0d |
|- ( ph -> ( -u 1 ^c ( 2 / ( O ` ( W ` I ) ) ) ) =/= 0 ) |
| 83 |
18
|
neeq1i |
|- ( T =/= 0 <-> ( -u 1 ^c ( 2 / ( O ` ( W ` I ) ) ) ) =/= 0 ) |
| 84 |
82 83
|
sylibr |
|- ( ph -> T =/= 0 ) |
| 85 |
84
|
ad2antrr |
|- ( ( ( ph /\ v e. U ) /\ ( a e. ZZ /\ ( ( P ` I ) ` v ) = ( a .x. ( W ` I ) ) ) ) -> T =/= 0 ) |
| 86 |
|
simprl |
|- ( ( ( ph /\ v e. U ) /\ ( a e. ZZ /\ ( ( P ` I ) ` v ) = ( a .x. ( W ` I ) ) ) ) -> a e. ZZ ) |
| 87 |
78 85 86
|
expclzd |
|- ( ( ( ph /\ v e. U ) /\ ( a e. ZZ /\ ( ( P ` I ) ` v ) = ( a .x. ( W ` I ) ) ) ) -> ( T ^ a ) e. CC ) |
| 88 |
50 87
|
eqeltrd |
|- ( ( ( ph /\ v e. U ) /\ ( a e. ZZ /\ ( ( P ` I ) ` v ) = ( a .x. ( W ` I ) ) ) ) -> ( X ` v ) e. CC ) |
| 89 |
49 88
|
rexlimddv |
|- ( ( ph /\ v e. U ) -> ( X ` v ) e. CC ) |
| 90 |
|
fveqeq2 |
|- ( v = x -> ( ( ( P ` I ) ` v ) = ( a .x. ( W ` I ) ) <-> ( ( P ` I ) ` x ) = ( a .x. ( W ` I ) ) ) ) |
| 91 |
90
|
rexbidv |
|- ( v = x -> ( E. a e. ZZ ( ( P ` I ) ` v ) = ( a .x. ( W ` I ) ) <-> E. a e. ZZ ( ( P ` I ) ` x ) = ( a .x. ( W ` I ) ) ) ) |
| 92 |
49
|
ralrimiva |
|- ( ph -> A. v e. U E. a e. ZZ ( ( P ` I ) ` v ) = ( a .x. ( W ` I ) ) ) |
| 93 |
92
|
adantr |
|- ( ( ph /\ ( x e. U /\ y e. U ) ) -> A. v e. U E. a e. ZZ ( ( P ` I ) ` v ) = ( a .x. ( W ` I ) ) ) |
| 94 |
|
simprl |
|- ( ( ph /\ ( x e. U /\ y e. U ) ) -> x e. U ) |
| 95 |
91 93 94
|
rspcdva |
|- ( ( ph /\ ( x e. U /\ y e. U ) ) -> E. a e. ZZ ( ( P ` I ) ` x ) = ( a .x. ( W ` I ) ) ) |
| 96 |
|
fveqeq2 |
|- ( v = y -> ( ( ( P ` I ) ` v ) = ( a .x. ( W ` I ) ) <-> ( ( P ` I ) ` y ) = ( a .x. ( W ` I ) ) ) ) |
| 97 |
96
|
rexbidv |
|- ( v = y -> ( E. a e. ZZ ( ( P ` I ) ` v ) = ( a .x. ( W ` I ) ) <-> E. a e. ZZ ( ( P ` I ) ` y ) = ( a .x. ( W ` I ) ) ) ) |
| 98 |
|
oveq1 |
|- ( a = b -> ( a .x. ( W ` I ) ) = ( b .x. ( W ` I ) ) ) |
| 99 |
98
|
eqeq2d |
|- ( a = b -> ( ( ( P ` I ) ` y ) = ( a .x. ( W ` I ) ) <-> ( ( P ` I ) ` y ) = ( b .x. ( W ` I ) ) ) ) |
| 100 |
99
|
cbvrexvw |
|- ( E. a e. ZZ ( ( P ` I ) ` y ) = ( a .x. ( W ` I ) ) <-> E. b e. ZZ ( ( P ` I ) ` y ) = ( b .x. ( W ` I ) ) ) |
| 101 |
97 100
|
bitrdi |
|- ( v = y -> ( E. a e. ZZ ( ( P ` I ) ` v ) = ( a .x. ( W ` I ) ) <-> E. b e. ZZ ( ( P ` I ) ` y ) = ( b .x. ( W ` I ) ) ) ) |
| 102 |
|
simprr |
|- ( ( ph /\ ( x e. U /\ y e. U ) ) -> y e. U ) |
| 103 |
101 93 102
|
rspcdva |
|- ( ( ph /\ ( x e. U /\ y e. U ) ) -> E. b e. ZZ ( ( P ` I ) ` y ) = ( b .x. ( W ` I ) ) ) |
| 104 |
|
reeanv |
|- ( E. a e. ZZ E. b e. ZZ ( ( ( P ` I ) ` x ) = ( a .x. ( W ` I ) ) /\ ( ( P ` I ) ` y ) = ( b .x. ( W ` I ) ) ) <-> ( E. a e. ZZ ( ( P ` I ) ` x ) = ( a .x. ( W ` I ) ) /\ E. b e. ZZ ( ( P ` I ) ` y ) = ( b .x. ( W ` I ) ) ) ) |
| 105 |
77
|
ad2antrr |
|- ( ( ( ph /\ ( x e. U /\ y e. U ) ) /\ ( ( a e. ZZ /\ b e. ZZ ) /\ ( ( ( P ` I ) ` x ) = ( a .x. ( W ` I ) ) /\ ( ( P ` I ) ` y ) = ( b .x. ( W ` I ) ) ) ) ) -> T e. CC ) |
| 106 |
84
|
ad2antrr |
|- ( ( ( ph /\ ( x e. U /\ y e. U ) ) /\ ( ( a e. ZZ /\ b e. ZZ ) /\ ( ( ( P ` I ) ` x ) = ( a .x. ( W ` I ) ) /\ ( ( P ` I ) ` y ) = ( b .x. ( W ` I ) ) ) ) ) -> T =/= 0 ) |
| 107 |
|
simprll |
|- ( ( ( ph /\ ( x e. U /\ y e. U ) ) /\ ( ( a e. ZZ /\ b e. ZZ ) /\ ( ( ( P ` I ) ` x ) = ( a .x. ( W ` I ) ) /\ ( ( P ` I ) ` y ) = ( b .x. ( W ` I ) ) ) ) ) -> a e. ZZ ) |
| 108 |
|
simprlr |
|- ( ( ( ph /\ ( x e. U /\ y e. U ) ) /\ ( ( a e. ZZ /\ b e. ZZ ) /\ ( ( ( P ` I ) ` x ) = ( a .x. ( W ` I ) ) /\ ( ( P ` I ) ` y ) = ( b .x. ( W ` I ) ) ) ) ) -> b e. ZZ ) |
| 109 |
|
expaddz |
|- ( ( ( T e. CC /\ T =/= 0 ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( T ^ ( a + b ) ) = ( ( T ^ a ) x. ( T ^ b ) ) ) |
| 110 |
105 106 107 108 109
|
syl22anc |
|- ( ( ( ph /\ ( x e. U /\ y e. U ) ) /\ ( ( a e. ZZ /\ b e. ZZ ) /\ ( ( ( P ` I ) ` x ) = ( a .x. ( W ` I ) ) /\ ( ( P ` I ) ` y ) = ( b .x. ( W ` I ) ) ) ) ) -> ( T ^ ( a + b ) ) = ( ( T ^ a ) x. ( T ^ b ) ) ) |
| 111 |
|
simpll |
|- ( ( ( ph /\ ( x e. U /\ y e. U ) ) /\ ( ( a e. ZZ /\ b e. ZZ ) /\ ( ( ( P ` I ) ` x ) = ( a .x. ( W ` I ) ) /\ ( ( P ` I ) ` y ) = ( b .x. ( W ` I ) ) ) ) ) -> ph ) |
| 112 |
56
|
ad2antrr |
|- ( ( ( ph /\ ( x e. U /\ y e. U ) ) /\ ( ( a e. ZZ /\ b e. ZZ ) /\ ( ( ( P ` I ) ` x ) = ( a .x. ( W ` I ) ) /\ ( ( P ` I ) ` y ) = ( b .x. ( W ` I ) ) ) ) ) -> Z e. Ring ) |
| 113 |
94
|
adantr |
|- ( ( ( ph /\ ( x e. U /\ y e. U ) ) /\ ( ( a e. ZZ /\ b e. ZZ ) /\ ( ( ( P ` I ) ` x ) = ( a .x. ( W ` I ) ) /\ ( ( P ` I ) ` y ) = ( b .x. ( W ` I ) ) ) ) ) -> x e. U ) |
| 114 |
102
|
adantr |
|- ( ( ( ph /\ ( x e. U /\ y e. U ) ) /\ ( ( a e. ZZ /\ b e. ZZ ) /\ ( ( ( P ` I ) ` x ) = ( a .x. ( W ` I ) ) /\ ( ( P ` I ) ` y ) = ( b .x. ( W ` I ) ) ) ) ) -> y e. U ) |
| 115 |
|
eqid |
|- ( .r ` Z ) = ( .r ` Z ) |
| 116 |
8 115
|
unitmulcl |
|- ( ( Z e. Ring /\ x e. U /\ y e. U ) -> ( x ( .r ` Z ) y ) e. U ) |
| 117 |
112 113 114 116
|
syl3anc |
|- ( ( ( ph /\ ( x e. U /\ y e. U ) ) /\ ( ( a e. ZZ /\ b e. ZZ ) /\ ( ( ( P ` I ) ` x ) = ( a .x. ( W ` I ) ) /\ ( ( P ` I ) ` y ) = ( b .x. ( W ` I ) ) ) ) ) -> ( x ( .r ` Z ) y ) e. U ) |
| 118 |
107 108
|
zaddcld |
|- ( ( ( ph /\ ( x e. U /\ y e. U ) ) /\ ( ( a e. ZZ /\ b e. ZZ ) /\ ( ( ( P ` I ) ` x ) = ( a .x. ( W ` I ) ) /\ ( ( P ` I ) ` y ) = ( b .x. ( W ` I ) ) ) ) ) -> ( a + b ) e. ZZ ) |
| 119 |
|
simprrl |
|- ( ( ( ph /\ ( x e. U /\ y e. U ) ) /\ ( ( a e. ZZ /\ b e. ZZ ) /\ ( ( ( P ` I ) ` x ) = ( a .x. ( W ` I ) ) /\ ( ( P ` I ) ` y ) = ( b .x. ( W ` I ) ) ) ) ) -> ( ( P ` I ) ` x ) = ( a .x. ( W ` I ) ) ) |
| 120 |
|
simprrr |
|- ( ( ( ph /\ ( x e. U /\ y e. U ) ) /\ ( ( a e. ZZ /\ b e. ZZ ) /\ ( ( ( P ` I ) ` x ) = ( a .x. ( W ` I ) ) /\ ( ( P ` I ) ` y ) = ( b .x. ( W ` I ) ) ) ) ) -> ( ( P ` I ) ` y ) = ( b .x. ( W ` I ) ) ) |
| 121 |
119 120
|
oveq12d |
|- ( ( ( ph /\ ( x e. U /\ y e. U ) ) /\ ( ( a e. ZZ /\ b e. ZZ ) /\ ( ( ( P ` I ) ` x ) = ( a .x. ( W ` I ) ) /\ ( ( P ` I ) ` y ) = ( b .x. ( W ` I ) ) ) ) ) -> ( ( ( P ` I ) ` x ) ( .r ` Z ) ( ( P ` I ) ` y ) ) = ( ( a .x. ( W ` I ) ) ( .r ` Z ) ( b .x. ( W ` I ) ) ) ) |
| 122 |
14 30 16 19
|
dpjghm |
|- ( ph -> ( P ` I ) e. ( ( H |`s ( H DProd S ) ) GrpHom H ) ) |
| 123 |
15
|
oveq2d |
|- ( ph -> ( H |`s ( H DProd S ) ) = ( H |`s U ) ) |
| 124 |
9
|
ovexi |
|- H e. _V |
| 125 |
69
|
ressid |
|- ( H e. _V -> ( H |`s U ) = H ) |
| 126 |
124 125
|
ax-mp |
|- ( H |`s U ) = H |
| 127 |
123 126
|
eqtrdi |
|- ( ph -> ( H |`s ( H DProd S ) ) = H ) |
| 128 |
127
|
oveq1d |
|- ( ph -> ( ( H |`s ( H DProd S ) ) GrpHom H ) = ( H GrpHom H ) ) |
| 129 |
122 128
|
eleqtrd |
|- ( ph -> ( P ` I ) e. ( H GrpHom H ) ) |
| 130 |
129
|
ad2antrr |
|- ( ( ( ph /\ ( x e. U /\ y e. U ) ) /\ ( ( a e. ZZ /\ b e. ZZ ) /\ ( ( ( P ` I ) ` x ) = ( a .x. ( W ` I ) ) /\ ( ( P ` I ) ` y ) = ( b .x. ( W ` I ) ) ) ) ) -> ( P ` I ) e. ( H GrpHom H ) ) |
| 131 |
8
|
fvexi |
|- U e. _V |
| 132 |
|
eqid |
|- ( mulGrp ` Z ) = ( mulGrp ` Z ) |
| 133 |
132 115
|
mgpplusg |
|- ( .r ` Z ) = ( +g ` ( mulGrp ` Z ) ) |
| 134 |
9 133
|
ressplusg |
|- ( U e. _V -> ( .r ` Z ) = ( +g ` H ) ) |
| 135 |
131 134
|
ax-mp |
|- ( .r ` Z ) = ( +g ` H ) |
| 136 |
69 135 135
|
ghmlin |
|- ( ( ( P ` I ) e. ( H GrpHom H ) /\ x e. U /\ y e. U ) -> ( ( P ` I ) ` ( x ( .r ` Z ) y ) ) = ( ( ( P ` I ) ` x ) ( .r ` Z ) ( ( P ` I ) ` y ) ) ) |
| 137 |
130 113 114 136
|
syl3anc |
|- ( ( ( ph /\ ( x e. U /\ y e. U ) ) /\ ( ( a e. ZZ /\ b e. ZZ ) /\ ( ( ( P ` I ) ` x ) = ( a .x. ( W ` I ) ) /\ ( ( P ` I ) ` y ) = ( b .x. ( W ` I ) ) ) ) ) -> ( ( P ` I ) ` ( x ( .r ` Z ) y ) ) = ( ( ( P ` I ) ` x ) ( .r ` Z ) ( ( P ` I ) ` y ) ) ) |
| 138 |
58
|
ad2antrr |
|- ( ( ( ph /\ ( x e. U /\ y e. U ) ) /\ ( ( a e. ZZ /\ b e. ZZ ) /\ ( ( ( P ` I ) ` x ) = ( a .x. ( W ` I ) ) /\ ( ( P ` I ) ` y ) = ( b .x. ( W ` I ) ) ) ) ) -> H e. Grp ) |
| 139 |
68
|
ad2antrr |
|- ( ( ( ph /\ ( x e. U /\ y e. U ) ) /\ ( ( a e. ZZ /\ b e. ZZ ) /\ ( ( ( P ` I ) ` x ) = ( a .x. ( W ` I ) ) /\ ( ( P ` I ) ` y ) = ( b .x. ( W ` I ) ) ) ) ) -> ( W ` I ) e. U ) |
| 140 |
69 10 135
|
mulgdir |
|- ( ( H e. Grp /\ ( a e. ZZ /\ b e. ZZ /\ ( W ` I ) e. U ) ) -> ( ( a + b ) .x. ( W ` I ) ) = ( ( a .x. ( W ` I ) ) ( .r ` Z ) ( b .x. ( W ` I ) ) ) ) |
| 141 |
138 107 108 139 140
|
syl13anc |
|- ( ( ( ph /\ ( x e. U /\ y e. U ) ) /\ ( ( a e. ZZ /\ b e. ZZ ) /\ ( ( ( P ` I ) ` x ) = ( a .x. ( W ` I ) ) /\ ( ( P ` I ) ` y ) = ( b .x. ( W ` I ) ) ) ) ) -> ( ( a + b ) .x. ( W ` I ) ) = ( ( a .x. ( W ` I ) ) ( .r ` Z ) ( b .x. ( W ` I ) ) ) ) |
| 142 |
121 137 141
|
3eqtr4d |
|- ( ( ( ph /\ ( x e. U /\ y e. U ) ) /\ ( ( a e. ZZ /\ b e. ZZ ) /\ ( ( ( P ` I ) ` x ) = ( a .x. ( W ` I ) ) /\ ( ( P ` I ) ` y ) = ( b .x. ( W ` I ) ) ) ) ) -> ( ( P ` I ) ` ( x ( .r ` Z ) y ) ) = ( ( a + b ) .x. ( W ` I ) ) ) |
| 143 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
|
dchrptlem1 |
|- ( ( ( ph /\ ( x ( .r ` Z ) y ) e. U ) /\ ( ( a + b ) e. ZZ /\ ( ( P ` I ) ` ( x ( .r ` Z ) y ) ) = ( ( a + b ) .x. ( W ` I ) ) ) ) -> ( X ` ( x ( .r ` Z ) y ) ) = ( T ^ ( a + b ) ) ) |
| 144 |
111 117 118 142 143
|
syl22anc |
|- ( ( ( ph /\ ( x e. U /\ y e. U ) ) /\ ( ( a e. ZZ /\ b e. ZZ ) /\ ( ( ( P ` I ) ` x ) = ( a .x. ( W ` I ) ) /\ ( ( P ` I ) ` y ) = ( b .x. ( W ` I ) ) ) ) ) -> ( X ` ( x ( .r ` Z ) y ) ) = ( T ^ ( a + b ) ) ) |
| 145 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
|
dchrptlem1 |
|- ( ( ( ph /\ x e. U ) /\ ( a e. ZZ /\ ( ( P ` I ) ` x ) = ( a .x. ( W ` I ) ) ) ) -> ( X ` x ) = ( T ^ a ) ) |
| 146 |
111 113 107 119 145
|
syl22anc |
|- ( ( ( ph /\ ( x e. U /\ y e. U ) ) /\ ( ( a e. ZZ /\ b e. ZZ ) /\ ( ( ( P ` I ) ` x ) = ( a .x. ( W ` I ) ) /\ ( ( P ` I ) ` y ) = ( b .x. ( W ` I ) ) ) ) ) -> ( X ` x ) = ( T ^ a ) ) |
| 147 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
|
dchrptlem1 |
|- ( ( ( ph /\ y e. U ) /\ ( b e. ZZ /\ ( ( P ` I ) ` y ) = ( b .x. ( W ` I ) ) ) ) -> ( X ` y ) = ( T ^ b ) ) |
| 148 |
111 114 108 120 147
|
syl22anc |
|- ( ( ( ph /\ ( x e. U /\ y e. U ) ) /\ ( ( a e. ZZ /\ b e. ZZ ) /\ ( ( ( P ` I ) ` x ) = ( a .x. ( W ` I ) ) /\ ( ( P ` I ) ` y ) = ( b .x. ( W ` I ) ) ) ) ) -> ( X ` y ) = ( T ^ b ) ) |
| 149 |
146 148
|
oveq12d |
|- ( ( ( ph /\ ( x e. U /\ y e. U ) ) /\ ( ( a e. ZZ /\ b e. ZZ ) /\ ( ( ( P ` I ) ` x ) = ( a .x. ( W ` I ) ) /\ ( ( P ` I ) ` y ) = ( b .x. ( W ` I ) ) ) ) ) -> ( ( X ` x ) x. ( X ` y ) ) = ( ( T ^ a ) x. ( T ^ b ) ) ) |
| 150 |
110 144 149
|
3eqtr4d |
|- ( ( ( ph /\ ( x e. U /\ y e. U ) ) /\ ( ( a e. ZZ /\ b e. ZZ ) /\ ( ( ( P ` I ) ` x ) = ( a .x. ( W ` I ) ) /\ ( ( P ` I ) ` y ) = ( b .x. ( W ` I ) ) ) ) ) -> ( X ` ( x ( .r ` Z ) y ) ) = ( ( X ` x ) x. ( X ` y ) ) ) |
| 151 |
150
|
expr |
|- ( ( ( ph /\ ( x e. U /\ y e. U ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( ( ( ( P ` I ) ` x ) = ( a .x. ( W ` I ) ) /\ ( ( P ` I ) ` y ) = ( b .x. ( W ` I ) ) ) -> ( X ` ( x ( .r ` Z ) y ) ) = ( ( X ` x ) x. ( X ` y ) ) ) ) |
| 152 |
151
|
rexlimdvva |
|- ( ( ph /\ ( x e. U /\ y e. U ) ) -> ( E. a e. ZZ E. b e. ZZ ( ( ( P ` I ) ` x ) = ( a .x. ( W ` I ) ) /\ ( ( P ` I ) ` y ) = ( b .x. ( W ` I ) ) ) -> ( X ` ( x ( .r ` Z ) y ) ) = ( ( X ` x ) x. ( X ` y ) ) ) ) |
| 153 |
104 152
|
biimtrrid |
|- ( ( ph /\ ( x e. U /\ y e. U ) ) -> ( ( E. a e. ZZ ( ( P ` I ) ` x ) = ( a .x. ( W ` I ) ) /\ E. b e. ZZ ( ( P ` I ) ` y ) = ( b .x. ( W ` I ) ) ) -> ( X ` ( x ( .r ` Z ) y ) ) = ( ( X ` x ) x. ( X ` y ) ) ) ) |
| 154 |
95 103 153
|
mp2and |
|- ( ( ph /\ ( x e. U /\ y e. U ) ) -> ( X ` ( x ( .r ` Z ) y ) ) = ( ( X ` x ) x. ( X ` y ) ) ) |
| 155 |
|
id |
|- ( ph -> ph ) |
| 156 |
|
eqid |
|- ( 1r ` Z ) = ( 1r ` Z ) |
| 157 |
8 156
|
1unit |
|- ( Z e. Ring -> ( 1r ` Z ) e. U ) |
| 158 |
56 157
|
syl |
|- ( ph -> ( 1r ` Z ) e. U ) |
| 159 |
|
0zd |
|- ( ph -> 0 e. ZZ ) |
| 160 |
|
eqid |
|- ( 0g ` H ) = ( 0g ` H ) |
| 161 |
160 160
|
ghmid |
|- ( ( P ` I ) e. ( H GrpHom H ) -> ( ( P ` I ) ` ( 0g ` H ) ) = ( 0g ` H ) ) |
| 162 |
129 161
|
syl |
|- ( ph -> ( ( P ` I ) ` ( 0g ` H ) ) = ( 0g ` H ) ) |
| 163 |
8 9 156
|
unitgrpid |
|- ( Z e. Ring -> ( 1r ` Z ) = ( 0g ` H ) ) |
| 164 |
56 163
|
syl |
|- ( ph -> ( 1r ` Z ) = ( 0g ` H ) ) |
| 165 |
164
|
fveq2d |
|- ( ph -> ( ( P ` I ) ` ( 1r ` Z ) ) = ( ( P ` I ) ` ( 0g ` H ) ) ) |
| 166 |
69 160 10
|
mulg0 |
|- ( ( W ` I ) e. U -> ( 0 .x. ( W ` I ) ) = ( 0g ` H ) ) |
| 167 |
68 166
|
syl |
|- ( ph -> ( 0 .x. ( W ` I ) ) = ( 0g ` H ) ) |
| 168 |
162 165 167
|
3eqtr4d |
|- ( ph -> ( ( P ` I ) ` ( 1r ` Z ) ) = ( 0 .x. ( W ` I ) ) ) |
| 169 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
|
dchrptlem1 |
|- ( ( ( ph /\ ( 1r ` Z ) e. U ) /\ ( 0 e. ZZ /\ ( ( P ` I ) ` ( 1r ` Z ) ) = ( 0 .x. ( W ` I ) ) ) ) -> ( X ` ( 1r ` Z ) ) = ( T ^ 0 ) ) |
| 170 |
155 158 159 168 169
|
syl22anc |
|- ( ph -> ( X ` ( 1r ` Z ) ) = ( T ^ 0 ) ) |
| 171 |
77
|
exp0d |
|- ( ph -> ( T ^ 0 ) = 1 ) |
| 172 |
170 171
|
eqtrd |
|- ( ph -> ( X ` ( 1r ` Z ) ) = 1 ) |
| 173 |
1 2 4 8 6 3 22 23 24 25 89 154 172
|
dchrelbasd |
|- ( ph -> ( v e. B |-> if ( v e. U , ( X ` v ) , 0 ) ) e. D ) |
| 174 |
61 12
|
sselid |
|- ( ph -> A e. B ) |
| 175 |
|
eleq1 |
|- ( v = A -> ( v e. U <-> A e. U ) ) |
| 176 |
|
fveq2 |
|- ( v = A -> ( X ` v ) = ( X ` A ) ) |
| 177 |
175 176
|
ifbieq1d |
|- ( v = A -> if ( v e. U , ( X ` v ) , 0 ) = if ( A e. U , ( X ` A ) , 0 ) ) |
| 178 |
|
eqid |
|- ( v e. B |-> if ( v e. U , ( X ` v ) , 0 ) ) = ( v e. B |-> if ( v e. U , ( X ` v ) , 0 ) ) |
| 179 |
|
fvex |
|- ( X ` v ) e. _V |
| 180 |
|
c0ex |
|- 0 e. _V |
| 181 |
179 180
|
ifex |
|- if ( v e. U , ( X ` v ) , 0 ) e. _V |
| 182 |
177 178 181
|
fvmpt3i |
|- ( A e. B -> ( ( v e. B |-> if ( v e. U , ( X ` v ) , 0 ) ) ` A ) = if ( A e. U , ( X ` A ) , 0 ) ) |
| 183 |
174 182
|
syl |
|- ( ph -> ( ( v e. B |-> if ( v e. U , ( X ` v ) , 0 ) ) ` A ) = if ( A e. U , ( X ` A ) , 0 ) ) |
| 184 |
12
|
iftrued |
|- ( ph -> if ( A e. U , ( X ` A ) , 0 ) = ( X ` A ) ) |
| 185 |
183 184
|
eqtrd |
|- ( ph -> ( ( v e. B |-> if ( v e. U , ( X ` v ) , 0 ) ) ` A ) = ( X ` A ) ) |
| 186 |
|
fveqeq2 |
|- ( v = A -> ( ( ( P ` I ) ` v ) = ( a .x. ( W ` I ) ) <-> ( ( P ` I ) ` A ) = ( a .x. ( W ` I ) ) ) ) |
| 187 |
186
|
rexbidv |
|- ( v = A -> ( E. a e. ZZ ( ( P ` I ) ` v ) = ( a .x. ( W ` I ) ) <-> E. a e. ZZ ( ( P ` I ) ` A ) = ( a .x. ( W ` I ) ) ) ) |
| 188 |
187 92 12
|
rspcdva |
|- ( ph -> E. a e. ZZ ( ( P ` I ) ` A ) = ( a .x. ( W ` I ) ) ) |
| 189 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
|
dchrptlem1 |
|- ( ( ( ph /\ A e. U ) /\ ( a e. ZZ /\ ( ( P ` I ) ` A ) = ( a .x. ( W ` I ) ) ) ) -> ( X ` A ) = ( T ^ a ) ) |
| 190 |
18
|
oveq1i |
|- ( T ^ a ) = ( ( -u 1 ^c ( 2 / ( O ` ( W ` I ) ) ) ) ^ a ) |
| 191 |
189 190
|
eqtrdi |
|- ( ( ( ph /\ A e. U ) /\ ( a e. ZZ /\ ( ( P ` I ) ` A ) = ( a .x. ( W ` I ) ) ) ) -> ( X ` A ) = ( ( -u 1 ^c ( 2 / ( O ` ( W ` I ) ) ) ) ^ a ) ) |
| 192 |
20
|
ad2antrr |
|- ( ( ( ph /\ A e. U ) /\ ( a e. ZZ /\ ( ( P ` I ) ` A ) = ( a .x. ( W ` I ) ) ) ) -> ( ( P ` I ) ` A ) =/= .1. ) |
| 193 |
58
|
ad2antrr |
|- ( ( ( ph /\ A e. U ) /\ ( a e. ZZ /\ ( ( P ` I ) ` A ) = ( a .x. ( W ` I ) ) ) ) -> H e. Grp ) |
| 194 |
68
|
ad2antrr |
|- ( ( ( ph /\ A e. U ) /\ ( a e. ZZ /\ ( ( P ` I ) ` A ) = ( a .x. ( W ` I ) ) ) ) -> ( W ` I ) e. U ) |
| 195 |
|
simprl |
|- ( ( ( ph /\ A e. U ) /\ ( a e. ZZ /\ ( ( P ` I ) ` A ) = ( a .x. ( W ` I ) ) ) ) -> a e. ZZ ) |
| 196 |
69 17 10 160
|
oddvds |
|- ( ( H e. Grp /\ ( W ` I ) e. U /\ a e. ZZ ) -> ( ( O ` ( W ` I ) ) || a <-> ( a .x. ( W ` I ) ) = ( 0g ` H ) ) ) |
| 197 |
193 194 195 196
|
syl3anc |
|- ( ( ( ph /\ A e. U ) /\ ( a e. ZZ /\ ( ( P ` I ) ` A ) = ( a .x. ( W ` I ) ) ) ) -> ( ( O ` ( W ` I ) ) || a <-> ( a .x. ( W ` I ) ) = ( 0g ` H ) ) ) |
| 198 |
71
|
ad2antrr |
|- ( ( ( ph /\ A e. U ) /\ ( a e. ZZ /\ ( ( P ` I ) ` A ) = ( a .x. ( W ` I ) ) ) ) -> ( O ` ( W ` I ) ) e. NN ) |
| 199 |
|
root1eq1 |
|- ( ( ( O ` ( W ` I ) ) e. NN /\ a e. ZZ ) -> ( ( ( -u 1 ^c ( 2 / ( O ` ( W ` I ) ) ) ) ^ a ) = 1 <-> ( O ` ( W ` I ) ) || a ) ) |
| 200 |
198 195 199
|
syl2anc |
|- ( ( ( ph /\ A e. U ) /\ ( a e. ZZ /\ ( ( P ` I ) ` A ) = ( a .x. ( W ` I ) ) ) ) -> ( ( ( -u 1 ^c ( 2 / ( O ` ( W ` I ) ) ) ) ^ a ) = 1 <-> ( O ` ( W ` I ) ) || a ) ) |
| 201 |
|
simprr |
|- ( ( ( ph /\ A e. U ) /\ ( a e. ZZ /\ ( ( P ` I ) ` A ) = ( a .x. ( W ` I ) ) ) ) -> ( ( P ` I ) ` A ) = ( a .x. ( W ` I ) ) ) |
| 202 |
5 164
|
eqtrid |
|- ( ph -> .1. = ( 0g ` H ) ) |
| 203 |
202
|
ad2antrr |
|- ( ( ( ph /\ A e. U ) /\ ( a e. ZZ /\ ( ( P ` I ) ` A ) = ( a .x. ( W ` I ) ) ) ) -> .1. = ( 0g ` H ) ) |
| 204 |
201 203
|
eqeq12d |
|- ( ( ( ph /\ A e. U ) /\ ( a e. ZZ /\ ( ( P ` I ) ` A ) = ( a .x. ( W ` I ) ) ) ) -> ( ( ( P ` I ) ` A ) = .1. <-> ( a .x. ( W ` I ) ) = ( 0g ` H ) ) ) |
| 205 |
197 200 204
|
3bitr4d |
|- ( ( ( ph /\ A e. U ) /\ ( a e. ZZ /\ ( ( P ` I ) ` A ) = ( a .x. ( W ` I ) ) ) ) -> ( ( ( -u 1 ^c ( 2 / ( O ` ( W ` I ) ) ) ) ^ a ) = 1 <-> ( ( P ` I ) ` A ) = .1. ) ) |
| 206 |
205
|
necon3bid |
|- ( ( ( ph /\ A e. U ) /\ ( a e. ZZ /\ ( ( P ` I ) ` A ) = ( a .x. ( W ` I ) ) ) ) -> ( ( ( -u 1 ^c ( 2 / ( O ` ( W ` I ) ) ) ) ^ a ) =/= 1 <-> ( ( P ` I ) ` A ) =/= .1. ) ) |
| 207 |
192 206
|
mpbird |
|- ( ( ( ph /\ A e. U ) /\ ( a e. ZZ /\ ( ( P ` I ) ` A ) = ( a .x. ( W ` I ) ) ) ) -> ( ( -u 1 ^c ( 2 / ( O ` ( W ` I ) ) ) ) ^ a ) =/= 1 ) |
| 208 |
191 207
|
eqnetrd |
|- ( ( ( ph /\ A e. U ) /\ ( a e. ZZ /\ ( ( P ` I ) ` A ) = ( a .x. ( W ` I ) ) ) ) -> ( X ` A ) =/= 1 ) |
| 209 |
208
|
rexlimdvaa |
|- ( ( ph /\ A e. U ) -> ( E. a e. ZZ ( ( P ` I ) ` A ) = ( a .x. ( W ` I ) ) -> ( X ` A ) =/= 1 ) ) |
| 210 |
12 209
|
mpdan |
|- ( ph -> ( E. a e. ZZ ( ( P ` I ) ` A ) = ( a .x. ( W ` I ) ) -> ( X ` A ) =/= 1 ) ) |
| 211 |
188 210
|
mpd |
|- ( ph -> ( X ` A ) =/= 1 ) |
| 212 |
185 211
|
eqnetrd |
|- ( ph -> ( ( v e. B |-> if ( v e. U , ( X ` v ) , 0 ) ) ` A ) =/= 1 ) |
| 213 |
|
fveq1 |
|- ( x = ( v e. B |-> if ( v e. U , ( X ` v ) , 0 ) ) -> ( x ` A ) = ( ( v e. B |-> if ( v e. U , ( X ` v ) , 0 ) ) ` A ) ) |
| 214 |
213
|
neeq1d |
|- ( x = ( v e. B |-> if ( v e. U , ( X ` v ) , 0 ) ) -> ( ( x ` A ) =/= 1 <-> ( ( v e. B |-> if ( v e. U , ( X ` v ) , 0 ) ) ` A ) =/= 1 ) ) |
| 215 |
214
|
rspcev |
|- ( ( ( v e. B |-> if ( v e. U , ( X ` v ) , 0 ) ) e. D /\ ( ( v e. B |-> if ( v e. U , ( X ` v ) , 0 ) ) ` A ) =/= 1 ) -> E. x e. D ( x ` A ) =/= 1 ) |
| 216 |
173 212 215
|
syl2anc |
|- ( ph -> E. x e. D ( x ` A ) =/= 1 ) |