| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dchrpt.g |  |-  G = ( DChr ` N ) | 
						
							| 2 |  | dchrpt.z |  |-  Z = ( Z/nZ ` N ) | 
						
							| 3 |  | dchrpt.d |  |-  D = ( Base ` G ) | 
						
							| 4 |  | dchrpt.b |  |-  B = ( Base ` Z ) | 
						
							| 5 |  | dchrpt.1 |  |-  .1. = ( 1r ` Z ) | 
						
							| 6 |  | dchrpt.n |  |-  ( ph -> N e. NN ) | 
						
							| 7 |  | dchrpt.n1 |  |-  ( ph -> A =/= .1. ) | 
						
							| 8 |  | dchrpt.u |  |-  U = ( Unit ` Z ) | 
						
							| 9 |  | dchrpt.h |  |-  H = ( ( mulGrp ` Z ) |`s U ) | 
						
							| 10 |  | dchrpt.m |  |-  .x. = ( .g ` H ) | 
						
							| 11 |  | dchrpt.s |  |-  S = ( k e. dom W |-> ran ( n e. ZZ |-> ( n .x. ( W ` k ) ) ) ) | 
						
							| 12 |  | dchrpt.au |  |-  ( ph -> A e. U ) | 
						
							| 13 |  | dchrpt.w |  |-  ( ph -> W e. Word U ) | 
						
							| 14 |  | dchrpt.2 |  |-  ( ph -> H dom DProd S ) | 
						
							| 15 |  | dchrpt.3 |  |-  ( ph -> ( H DProd S ) = U ) | 
						
							| 16 | 6 | nnnn0d |  |-  ( ph -> N e. NN0 ) | 
						
							| 17 | 2 | zncrng |  |-  ( N e. NN0 -> Z e. CRing ) | 
						
							| 18 | 16 17 | syl |  |-  ( ph -> Z e. CRing ) | 
						
							| 19 |  | crngring |  |-  ( Z e. CRing -> Z e. Ring ) | 
						
							| 20 | 18 19 | syl |  |-  ( ph -> Z e. Ring ) | 
						
							| 21 | 8 9 | unitgrp |  |-  ( Z e. Ring -> H e. Grp ) | 
						
							| 22 | 20 21 | syl |  |-  ( ph -> H e. Grp ) | 
						
							| 23 | 22 | grpmndd |  |-  ( ph -> H e. Mnd ) | 
						
							| 24 | 13 | dmexd |  |-  ( ph -> dom W e. _V ) | 
						
							| 25 |  | eqid |  |-  ( 0g ` H ) = ( 0g ` H ) | 
						
							| 26 | 25 | gsumz |  |-  ( ( H e. Mnd /\ dom W e. _V ) -> ( H gsum ( a e. dom W |-> ( 0g ` H ) ) ) = ( 0g ` H ) ) | 
						
							| 27 | 23 24 26 | syl2anc |  |-  ( ph -> ( H gsum ( a e. dom W |-> ( 0g ` H ) ) ) = ( 0g ` H ) ) | 
						
							| 28 | 8 9 5 | unitgrpid |  |-  ( Z e. Ring -> .1. = ( 0g ` H ) ) | 
						
							| 29 | 20 28 | syl |  |-  ( ph -> .1. = ( 0g ` H ) ) | 
						
							| 30 | 29 | mpteq2dv |  |-  ( ph -> ( a e. dom W |-> .1. ) = ( a e. dom W |-> ( 0g ` H ) ) ) | 
						
							| 31 | 30 | oveq2d |  |-  ( ph -> ( H gsum ( a e. dom W |-> .1. ) ) = ( H gsum ( a e. dom W |-> ( 0g ` H ) ) ) ) | 
						
							| 32 | 27 31 29 | 3eqtr4d |  |-  ( ph -> ( H gsum ( a e. dom W |-> .1. ) ) = .1. ) | 
						
							| 33 | 7 32 | neeqtrrd |  |-  ( ph -> A =/= ( H gsum ( a e. dom W |-> .1. ) ) ) | 
						
							| 34 |  | zex |  |-  ZZ e. _V | 
						
							| 35 | 34 | mptex |  |-  ( n e. ZZ |-> ( n .x. ( W ` k ) ) ) e. _V | 
						
							| 36 | 35 | rnex |  |-  ran ( n e. ZZ |-> ( n .x. ( W ` k ) ) ) e. _V | 
						
							| 37 | 36 11 | dmmpti |  |-  dom S = dom W | 
						
							| 38 | 37 | a1i |  |-  ( ph -> dom S = dom W ) | 
						
							| 39 |  | eqid |  |-  ( H dProj S ) = ( H dProj S ) | 
						
							| 40 | 12 15 | eleqtrrd |  |-  ( ph -> A e. ( H DProd S ) ) | 
						
							| 41 |  | eqid |  |-  { h e. X_ i e. dom W ( S ` i ) | h finSupp ( 0g ` H ) } = { h e. X_ i e. dom W ( S ` i ) | h finSupp ( 0g ` H ) } | 
						
							| 42 | 29 | adantr |  |-  ( ( ph /\ a e. dom W ) -> .1. = ( 0g ` H ) ) | 
						
							| 43 | 14 38 | dprdf2 |  |-  ( ph -> S : dom W --> ( SubGrp ` H ) ) | 
						
							| 44 | 43 | ffvelcdmda |  |-  ( ( ph /\ a e. dom W ) -> ( S ` a ) e. ( SubGrp ` H ) ) | 
						
							| 45 | 25 | subg0cl |  |-  ( ( S ` a ) e. ( SubGrp ` H ) -> ( 0g ` H ) e. ( S ` a ) ) | 
						
							| 46 | 44 45 | syl |  |-  ( ( ph /\ a e. dom W ) -> ( 0g ` H ) e. ( S ` a ) ) | 
						
							| 47 | 42 46 | eqeltrd |  |-  ( ( ph /\ a e. dom W ) -> .1. e. ( S ` a ) ) | 
						
							| 48 | 5 | fvexi |  |-  .1. e. _V | 
						
							| 49 | 48 | a1i |  |-  ( ph -> .1. e. _V ) | 
						
							| 50 | 24 49 | fczfsuppd |  |-  ( ph -> ( dom W X. { .1. } ) finSupp .1. ) | 
						
							| 51 |  | fconstmpt |  |-  ( dom W X. { .1. } ) = ( a e. dom W |-> .1. ) | 
						
							| 52 | 51 | eqcomi |  |-  ( a e. dom W |-> .1. ) = ( dom W X. { .1. } ) | 
						
							| 53 | 52 | a1i |  |-  ( ph -> ( a e. dom W |-> .1. ) = ( dom W X. { .1. } ) ) | 
						
							| 54 | 29 | eqcomd |  |-  ( ph -> ( 0g ` H ) = .1. ) | 
						
							| 55 | 50 53 54 | 3brtr4d |  |-  ( ph -> ( a e. dom W |-> .1. ) finSupp ( 0g ` H ) ) | 
						
							| 56 | 41 14 38 47 55 | dprdwd |  |-  ( ph -> ( a e. dom W |-> .1. ) e. { h e. X_ i e. dom W ( S ` i ) | h finSupp ( 0g ` H ) } ) | 
						
							| 57 | 14 38 39 40 25 41 56 | dpjeq |  |-  ( ph -> ( A = ( H gsum ( a e. dom W |-> .1. ) ) <-> A. a e. dom W ( ( ( H dProj S ) ` a ) ` A ) = .1. ) ) | 
						
							| 58 | 57 | necon3abid |  |-  ( ph -> ( A =/= ( H gsum ( a e. dom W |-> .1. ) ) <-> -. A. a e. dom W ( ( ( H dProj S ) ` a ) ` A ) = .1. ) ) | 
						
							| 59 | 33 58 | mpbid |  |-  ( ph -> -. A. a e. dom W ( ( ( H dProj S ) ` a ) ` A ) = .1. ) | 
						
							| 60 |  | rexnal |  |-  ( E. a e. dom W -. ( ( ( H dProj S ) ` a ) ` A ) = .1. <-> -. A. a e. dom W ( ( ( H dProj S ) ` a ) ` A ) = .1. ) | 
						
							| 61 | 59 60 | sylibr |  |-  ( ph -> E. a e. dom W -. ( ( ( H dProj S ) ` a ) ` A ) = .1. ) | 
						
							| 62 |  | df-ne |  |-  ( ( ( ( H dProj S ) ` a ) ` A ) =/= .1. <-> -. ( ( ( H dProj S ) ` a ) ` A ) = .1. ) | 
						
							| 63 | 6 | adantr |  |-  ( ( ph /\ ( a e. dom W /\ ( ( ( H dProj S ) ` a ) ` A ) =/= .1. ) ) -> N e. NN ) | 
						
							| 64 | 7 | adantr |  |-  ( ( ph /\ ( a e. dom W /\ ( ( ( H dProj S ) ` a ) ` A ) =/= .1. ) ) -> A =/= .1. ) | 
						
							| 65 | 12 | adantr |  |-  ( ( ph /\ ( a e. dom W /\ ( ( ( H dProj S ) ` a ) ` A ) =/= .1. ) ) -> A e. U ) | 
						
							| 66 | 13 | adantr |  |-  ( ( ph /\ ( a e. dom W /\ ( ( ( H dProj S ) ` a ) ` A ) =/= .1. ) ) -> W e. Word U ) | 
						
							| 67 | 14 | adantr |  |-  ( ( ph /\ ( a e. dom W /\ ( ( ( H dProj S ) ` a ) ` A ) =/= .1. ) ) -> H dom DProd S ) | 
						
							| 68 | 15 | adantr |  |-  ( ( ph /\ ( a e. dom W /\ ( ( ( H dProj S ) ` a ) ` A ) =/= .1. ) ) -> ( H DProd S ) = U ) | 
						
							| 69 |  | eqid |  |-  ( od ` H ) = ( od ` H ) | 
						
							| 70 |  | eqid |  |-  ( -u 1 ^c ( 2 / ( ( od ` H ) ` ( W ` a ) ) ) ) = ( -u 1 ^c ( 2 / ( ( od ` H ) ` ( W ` a ) ) ) ) | 
						
							| 71 |  | simprl |  |-  ( ( ph /\ ( a e. dom W /\ ( ( ( H dProj S ) ` a ) ` A ) =/= .1. ) ) -> a e. dom W ) | 
						
							| 72 |  | simprr |  |-  ( ( ph /\ ( a e. dom W /\ ( ( ( H dProj S ) ` a ) ` A ) =/= .1. ) ) -> ( ( ( H dProj S ) ` a ) ` A ) =/= .1. ) | 
						
							| 73 |  | eqid |  |-  ( u e. U |-> ( iota h E. m e. ZZ ( ( ( ( H dProj S ) ` a ) ` u ) = ( m .x. ( W ` a ) ) /\ h = ( ( -u 1 ^c ( 2 / ( ( od ` H ) ` ( W ` a ) ) ) ) ^ m ) ) ) ) = ( u e. U |-> ( iota h E. m e. ZZ ( ( ( ( H dProj S ) ` a ) ` u ) = ( m .x. ( W ` a ) ) /\ h = ( ( -u 1 ^c ( 2 / ( ( od ` H ) ` ( W ` a ) ) ) ) ^ m ) ) ) ) | 
						
							| 74 | 1 2 3 4 5 63 64 8 9 10 11 65 66 67 68 39 69 70 71 72 73 | dchrptlem2 |  |-  ( ( ph /\ ( a e. dom W /\ ( ( ( H dProj S ) ` a ) ` A ) =/= .1. ) ) -> E. x e. D ( x ` A ) =/= 1 ) | 
						
							| 75 | 74 | expr |  |-  ( ( ph /\ a e. dom W ) -> ( ( ( ( H dProj S ) ` a ) ` A ) =/= .1. -> E. x e. D ( x ` A ) =/= 1 ) ) | 
						
							| 76 | 62 75 | biimtrrid |  |-  ( ( ph /\ a e. dom W ) -> ( -. ( ( ( H dProj S ) ` a ) ` A ) = .1. -> E. x e. D ( x ` A ) =/= 1 ) ) | 
						
							| 77 | 76 | rexlimdva |  |-  ( ph -> ( E. a e. dom W -. ( ( ( H dProj S ) ` a ) ` A ) = .1. -> E. x e. D ( x ` A ) =/= 1 ) ) | 
						
							| 78 | 61 77 | mpd |  |-  ( ph -> E. x e. D ( x ` A ) =/= 1 ) |