Metamath Proof Explorer


Theorem dchrptlem3

Description: Lemma for dchrpt . (Contributed by Mario Carneiro, 28-Apr-2016)

Ref Expression
Hypotheses dchrpt.g G = DChr N
dchrpt.z Z = /N
dchrpt.d D = Base G
dchrpt.b B = Base Z
dchrpt.1 1 ˙ = 1 Z
dchrpt.n φ N
dchrpt.n1 φ A 1 ˙
dchrpt.u U = Unit Z
dchrpt.h H = mulGrp Z 𝑠 U
dchrpt.m · ˙ = H
dchrpt.s S = k dom W ran n n · ˙ W k
dchrpt.au φ A U
dchrpt.w φ W Word U
dchrpt.2 φ H dom DProd S
dchrpt.3 φ H DProd S = U
Assertion dchrptlem3 φ x D x A 1

Proof

Step Hyp Ref Expression
1 dchrpt.g G = DChr N
2 dchrpt.z Z = /N
3 dchrpt.d D = Base G
4 dchrpt.b B = Base Z
5 dchrpt.1 1 ˙ = 1 Z
6 dchrpt.n φ N
7 dchrpt.n1 φ A 1 ˙
8 dchrpt.u U = Unit Z
9 dchrpt.h H = mulGrp Z 𝑠 U
10 dchrpt.m · ˙ = H
11 dchrpt.s S = k dom W ran n n · ˙ W k
12 dchrpt.au φ A U
13 dchrpt.w φ W Word U
14 dchrpt.2 φ H dom DProd S
15 dchrpt.3 φ H DProd S = U
16 6 nnnn0d φ N 0
17 2 zncrng N 0 Z CRing
18 16 17 syl φ Z CRing
19 crngring Z CRing Z Ring
20 18 19 syl φ Z Ring
21 8 9 unitgrp Z Ring H Grp
22 20 21 syl φ H Grp
23 22 grpmndd φ H Mnd
24 13 dmexd φ dom W V
25 eqid 0 H = 0 H
26 25 gsumz H Mnd dom W V H a dom W 0 H = 0 H
27 23 24 26 syl2anc φ H a dom W 0 H = 0 H
28 8 9 5 unitgrpid Z Ring 1 ˙ = 0 H
29 20 28 syl φ 1 ˙ = 0 H
30 29 mpteq2dv φ a dom W 1 ˙ = a dom W 0 H
31 30 oveq2d φ H a dom W 1 ˙ = H a dom W 0 H
32 27 31 29 3eqtr4d φ H a dom W 1 ˙ = 1 ˙
33 7 32 neeqtrrd φ A H a dom W 1 ˙
34 zex V
35 34 mptex n n · ˙ W k V
36 35 rnex ran n n · ˙ W k V
37 36 11 dmmpti dom S = dom W
38 37 a1i φ dom S = dom W
39 eqid H dProj S = H dProj S
40 12 15 eleqtrrd φ A H DProd S
41 eqid h i dom W S i | finSupp 0 H h = h i dom W S i | finSupp 0 H h
42 29 adantr φ a dom W 1 ˙ = 0 H
43 14 38 dprdf2 φ S : dom W SubGrp H
44 43 ffvelrnda φ a dom W S a SubGrp H
45 25 subg0cl S a SubGrp H 0 H S a
46 44 45 syl φ a dom W 0 H S a
47 42 46 eqeltrd φ a dom W 1 ˙ S a
48 5 fvexi 1 ˙ V
49 48 a1i φ 1 ˙ V
50 24 49 fczfsuppd φ finSupp 1 ˙ dom W × 1 ˙
51 fconstmpt dom W × 1 ˙ = a dom W 1 ˙
52 51 eqcomi a dom W 1 ˙ = dom W × 1 ˙
53 52 a1i φ a dom W 1 ˙ = dom W × 1 ˙
54 29 eqcomd φ 0 H = 1 ˙
55 50 53 54 3brtr4d φ finSupp 0 H a dom W 1 ˙
56 41 14 38 47 55 dprdwd φ a dom W 1 ˙ h i dom W S i | finSupp 0 H h
57 14 38 39 40 25 41 56 dpjeq φ A = H a dom W 1 ˙ a dom W H dProj S a A = 1 ˙
58 57 necon3abid φ A H a dom W 1 ˙ ¬ a dom W H dProj S a A = 1 ˙
59 33 58 mpbid φ ¬ a dom W H dProj S a A = 1 ˙
60 rexnal a dom W ¬ H dProj S a A = 1 ˙ ¬ a dom W H dProj S a A = 1 ˙
61 59 60 sylibr φ a dom W ¬ H dProj S a A = 1 ˙
62 df-ne H dProj S a A 1 ˙ ¬ H dProj S a A = 1 ˙
63 6 adantr φ a dom W H dProj S a A 1 ˙ N
64 7 adantr φ a dom W H dProj S a A 1 ˙ A 1 ˙
65 12 adantr φ a dom W H dProj S a A 1 ˙ A U
66 13 adantr φ a dom W H dProj S a A 1 ˙ W Word U
67 14 adantr φ a dom W H dProj S a A 1 ˙ H dom DProd S
68 15 adantr φ a dom W H dProj S a A 1 ˙ H DProd S = U
69 eqid od H = od H
70 eqid 1 2 od H W a = 1 2 od H W a
71 simprl φ a dom W H dProj S a A 1 ˙ a dom W
72 simprr φ a dom W H dProj S a A 1 ˙ H dProj S a A 1 ˙
73 eqid u U ι h | m H dProj S a u = m · ˙ W a h = -1 2 od H W a m = u U ι h | m H dProj S a u = m · ˙ W a h = -1 2 od H W a m
74 1 2 3 4 5 63 64 8 9 10 11 65 66 67 68 39 69 70 71 72 73 dchrptlem2 φ a dom W H dProj S a A 1 ˙ x D x A 1
75 74 expr φ a dom W H dProj S a A 1 ˙ x D x A 1
76 62 75 syl5bir φ a dom W ¬ H dProj S a A = 1 ˙ x D x A 1
77 76 rexlimdva φ a dom W ¬ H dProj S a A = 1 ˙ x D x A 1
78 61 77 mpd φ x D x A 1