| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dchrpt.g |
|
| 2 |
|
dchrpt.z |
|
| 3 |
|
dchrpt.d |
|
| 4 |
|
dchrpt.b |
|
| 5 |
|
dchrpt.1 |
|
| 6 |
|
dchrpt.n |
|
| 7 |
|
dchrpt.n1 |
|
| 8 |
|
dchrpt.u |
|
| 9 |
|
dchrpt.h |
|
| 10 |
|
dchrpt.m |
|
| 11 |
|
dchrpt.s |
|
| 12 |
|
dchrpt.au |
|
| 13 |
|
dchrpt.w |
|
| 14 |
|
dchrpt.2 |
|
| 15 |
|
dchrpt.3 |
|
| 16 |
6
|
nnnn0d |
|
| 17 |
2
|
zncrng |
|
| 18 |
16 17
|
syl |
|
| 19 |
|
crngring |
|
| 20 |
18 19
|
syl |
|
| 21 |
8 9
|
unitgrp |
|
| 22 |
20 21
|
syl |
|
| 23 |
22
|
grpmndd |
|
| 24 |
13
|
dmexd |
|
| 25 |
|
eqid |
|
| 26 |
25
|
gsumz |
|
| 27 |
23 24 26
|
syl2anc |
|
| 28 |
8 9 5
|
unitgrpid |
|
| 29 |
20 28
|
syl |
|
| 30 |
29
|
mpteq2dv |
|
| 31 |
30
|
oveq2d |
|
| 32 |
27 31 29
|
3eqtr4d |
|
| 33 |
7 32
|
neeqtrrd |
|
| 34 |
|
zex |
|
| 35 |
34
|
mptex |
|
| 36 |
35
|
rnex |
|
| 37 |
36 11
|
dmmpti |
|
| 38 |
37
|
a1i |
|
| 39 |
|
eqid |
|
| 40 |
12 15
|
eleqtrrd |
|
| 41 |
|
eqid |
|
| 42 |
29
|
adantr |
|
| 43 |
14 38
|
dprdf2 |
|
| 44 |
43
|
ffvelcdmda |
|
| 45 |
25
|
subg0cl |
|
| 46 |
44 45
|
syl |
|
| 47 |
42 46
|
eqeltrd |
|
| 48 |
5
|
fvexi |
|
| 49 |
48
|
a1i |
|
| 50 |
24 49
|
fczfsuppd |
|
| 51 |
|
fconstmpt |
|
| 52 |
51
|
eqcomi |
|
| 53 |
52
|
a1i |
|
| 54 |
29
|
eqcomd |
|
| 55 |
50 53 54
|
3brtr4d |
|
| 56 |
41 14 38 47 55
|
dprdwd |
|
| 57 |
14 38 39 40 25 41 56
|
dpjeq |
|
| 58 |
57
|
necon3abid |
|
| 59 |
33 58
|
mpbid |
|
| 60 |
|
rexnal |
|
| 61 |
59 60
|
sylibr |
|
| 62 |
|
df-ne |
|
| 63 |
6
|
adantr |
|
| 64 |
7
|
adantr |
|
| 65 |
12
|
adantr |
|
| 66 |
13
|
adantr |
|
| 67 |
14
|
adantr |
|
| 68 |
15
|
adantr |
|
| 69 |
|
eqid |
|
| 70 |
|
eqid |
|
| 71 |
|
simprl |
|
| 72 |
|
simprr |
|
| 73 |
|
eqid |
|
| 74 |
1 2 3 4 5 63 64 8 9 10 11 65 66 67 68 39 69 70 71 72 73
|
dchrptlem2 |
|
| 75 |
74
|
expr |
|
| 76 |
62 75
|
biimtrrid |
|
| 77 |
76
|
rexlimdva |
|
| 78 |
61 77
|
mpd |
|