Metamath Proof Explorer


Theorem dchrptlem3

Description: Lemma for dchrpt . (Contributed by Mario Carneiro, 28-Apr-2016)

Ref Expression
Hypotheses dchrpt.g G=DChrN
dchrpt.z Z=/N
dchrpt.d D=BaseG
dchrpt.b B=BaseZ
dchrpt.1 1˙=1Z
dchrpt.n φN
dchrpt.n1 φA1˙
dchrpt.u U=UnitZ
dchrpt.h H=mulGrpZ𝑠U
dchrpt.m ·˙=H
dchrpt.s S=kdomWrannn·˙Wk
dchrpt.au φAU
dchrpt.w φWWordU
dchrpt.2 φHdomDProdS
dchrpt.3 φHDProdS=U
Assertion dchrptlem3 φxDxA1

Proof

Step Hyp Ref Expression
1 dchrpt.g G=DChrN
2 dchrpt.z Z=/N
3 dchrpt.d D=BaseG
4 dchrpt.b B=BaseZ
5 dchrpt.1 1˙=1Z
6 dchrpt.n φN
7 dchrpt.n1 φA1˙
8 dchrpt.u U=UnitZ
9 dchrpt.h H=mulGrpZ𝑠U
10 dchrpt.m ·˙=H
11 dchrpt.s S=kdomWrannn·˙Wk
12 dchrpt.au φAU
13 dchrpt.w φWWordU
14 dchrpt.2 φHdomDProdS
15 dchrpt.3 φHDProdS=U
16 6 nnnn0d φN0
17 2 zncrng N0ZCRing
18 16 17 syl φZCRing
19 crngring ZCRingZRing
20 18 19 syl φZRing
21 8 9 unitgrp ZRingHGrp
22 20 21 syl φHGrp
23 22 grpmndd φHMnd
24 13 dmexd φdomWV
25 eqid 0H=0H
26 25 gsumz HMnddomWVHadomW0H=0H
27 23 24 26 syl2anc φHadomW0H=0H
28 8 9 5 unitgrpid ZRing1˙=0H
29 20 28 syl φ1˙=0H
30 29 mpteq2dv φadomW1˙=adomW0H
31 30 oveq2d φHadomW1˙=HadomW0H
32 27 31 29 3eqtr4d φHadomW1˙=1˙
33 7 32 neeqtrrd φAHadomW1˙
34 zex V
35 34 mptex nn·˙WkV
36 35 rnex rannn·˙WkV
37 36 11 dmmpti domS=domW
38 37 a1i φdomS=domW
39 eqid HdProjS=HdProjS
40 12 15 eleqtrrd φAHDProdS
41 eqid hidomWSi|finSupp0Hh=hidomWSi|finSupp0Hh
42 29 adantr φadomW1˙=0H
43 14 38 dprdf2 φS:domWSubGrpH
44 43 ffvelcdmda φadomWSaSubGrpH
45 25 subg0cl SaSubGrpH0HSa
46 44 45 syl φadomW0HSa
47 42 46 eqeltrd φadomW1˙Sa
48 5 fvexi 1˙V
49 48 a1i φ1˙V
50 24 49 fczfsuppd φfinSupp1˙domW×1˙
51 fconstmpt domW×1˙=adomW1˙
52 51 eqcomi adomW1˙=domW×1˙
53 52 a1i φadomW1˙=domW×1˙
54 29 eqcomd φ0H=1˙
55 50 53 54 3brtr4d φfinSupp0HadomW1˙
56 41 14 38 47 55 dprdwd φadomW1˙hidomWSi|finSupp0Hh
57 14 38 39 40 25 41 56 dpjeq φA=HadomW1˙adomWHdProjSaA=1˙
58 57 necon3abid φAHadomW1˙¬adomWHdProjSaA=1˙
59 33 58 mpbid φ¬adomWHdProjSaA=1˙
60 rexnal adomW¬HdProjSaA=1˙¬adomWHdProjSaA=1˙
61 59 60 sylibr φadomW¬HdProjSaA=1˙
62 df-ne HdProjSaA1˙¬HdProjSaA=1˙
63 6 adantr φadomWHdProjSaA1˙N
64 7 adantr φadomWHdProjSaA1˙A1˙
65 12 adantr φadomWHdProjSaA1˙AU
66 13 adantr φadomWHdProjSaA1˙WWordU
67 14 adantr φadomWHdProjSaA1˙HdomDProdS
68 15 adantr φadomWHdProjSaA1˙HDProdS=U
69 eqid odH=odH
70 eqid 12odHWa=12odHWa
71 simprl φadomWHdProjSaA1˙adomW
72 simprr φadomWHdProjSaA1˙HdProjSaA1˙
73 eqid uUιh|mHdProjSau=m·˙Wah=-12odHWam=uUιh|mHdProjSau=m·˙Wah=-12odHWam
74 1 2 3 4 5 63 64 8 9 10 11 65 66 67 68 39 69 70 71 72 73 dchrptlem2 φadomWHdProjSaA1˙xDxA1
75 74 expr φadomWHdProjSaA1˙xDxA1
76 62 75 biimtrrid φadomW¬HdProjSaA=1˙xDxA1
77 76 rexlimdva φadomW¬HdProjSaA=1˙xDxA1
78 61 77 mpd φxDxA1