Metamath Proof Explorer


Definition df-dprd

Description: Define the internal direct product of a family of subgroups. (Contributed by Mario Carneiro, 21-Apr-2016) (Revised by AV, 11-Jul-2019)

Ref Expression
Assertion df-dprd DProd=gGrp,sh|h:domhSubGrpgxdomhydomhxhxCntzghyhxmrClsSubGrpghdomhx=0granfhxdomssx|finSupp0ghgf

Detailed syntax breakdown

Step Hyp Ref Expression
0 cdprd classDProd
1 vg setvarg
2 cgrp classGrp
3 vs setvars
4 vh setvarh
5 4 cv setvarh
6 5 cdm classdomh
7 csubg classSubGrp
8 1 cv setvarg
9 8 7 cfv classSubGrpg
10 6 9 5 wf wffh:domhSubGrpg
11 vx setvarx
12 vy setvary
13 11 cv setvarx
14 13 csn classx
15 6 14 cdif classdomhx
16 13 5 cfv classhx
17 ccntz classCntz
18 8 17 cfv classCntzg
19 12 cv setvary
20 19 5 cfv classhy
21 20 18 cfv classCntzghy
22 16 21 wss wffhxCntzghy
23 22 12 15 wral wffydomhxhxCntzghy
24 cmrc classmrCls
25 9 24 cfv classmrClsSubGrpg
26 5 15 cima classhdomhx
27 26 cuni classhdomhx
28 27 25 cfv classmrClsSubGrpghdomhx
29 16 28 cin classhxmrClsSubGrpghdomhx
30 c0g class0𝑔
31 8 30 cfv class0g
32 31 csn class0g
33 29 32 wceq wffhxmrClsSubGrpghdomhx=0g
34 23 33 wa wffydomhxhxCntzghyhxmrClsSubGrpghdomhx=0g
35 34 11 6 wral wffxdomhydomhxhxCntzghyhxmrClsSubGrpghdomhx=0g
36 10 35 wa wffh:domhSubGrpgxdomhydomhxhxCntzghyhxmrClsSubGrpghdomhx=0g
37 36 4 cab classh|h:domhSubGrpgxdomhydomhxhxCntzghyhxmrClsSubGrpghdomhx=0g
38 vf setvarf
39 3 cv setvars
40 39 cdm classdoms
41 13 39 cfv classsx
42 11 40 41 cixp classxdomssx
43 cfsupp classfinSupp
44 5 31 43 wbr wfffinSupp0gh
45 44 4 42 crab classhxdomssx|finSupp0gh
46 cgsu classΣ𝑔
47 38 cv setvarf
48 8 47 46 co classgf
49 38 45 48 cmpt classfhxdomssx|finSupp0ghgf
50 49 crn classranfhxdomssx|finSupp0ghgf
51 1 3 2 37 50 cmpo classgGrp,sh|h:domhSubGrpgxdomhydomhxhxCntzghyhxmrClsSubGrpghdomhx=0granfhxdomssx|finSupp0ghgf
52 0 51 wceq wffDProd=gGrp,sh|h:domhSubGrpgxdomhydomhxhxCntzghyhxmrClsSubGrpghdomhx=0granfhxdomssx|finSupp0ghgf