Metamath Proof Explorer


Theorem dpjeq

Description: Decompose a group sum into projections. (Contributed by Mario Carneiro, 26-Apr-2016) (Revised by AV, 14-Jul-2019)

Ref Expression
Hypotheses dpjfval.1 φ G dom DProd S
dpjfval.2 φ dom S = I
dpjfval.p P = G dProj S
dpjidcl.3 φ A G DProd S
dpjidcl.0 0 ˙ = 0 G
dpjidcl.w W = h i I S i | finSupp 0 ˙ h
dpjeq.c φ x I C W
Assertion dpjeq φ A = G x I C x I P x A = C

Proof

Step Hyp Ref Expression
1 dpjfval.1 φ G dom DProd S
2 dpjfval.2 φ dom S = I
3 dpjfval.p P = G dProj S
4 dpjidcl.3 φ A G DProd S
5 dpjidcl.0 0 ˙ = 0 G
6 dpjidcl.w W = h i I S i | finSupp 0 ˙ h
7 dpjeq.c φ x I C W
8 1 2 3 4 5 6 dpjidcl φ x I P x A W A = G x I P x A
9 8 simprd φ A = G x I P x A
10 9 eqeq1d φ A = G x I C G x I P x A = G x I C
11 8 simpld φ x I P x A W
12 5 6 1 2 11 7 dprdf11 φ G x I P x A = G x I C x I P x A = x I C
13 fvex P x A V
14 13 rgenw x I P x A V
15 mpteqb x I P x A V x I P x A = x I C x I P x A = C
16 14 15 mp1i φ x I P x A = x I C x I P x A = C
17 10 12 16 3bitrd φ A = G x I C x I P x A = C