Metamath Proof Explorer


Theorem dpjeq

Description: Decompose a group sum into projections. (Contributed by Mario Carneiro, 26-Apr-2016) (Revised by AV, 14-Jul-2019)

Ref Expression
Hypotheses dpjfval.1 φGdomDProdS
dpjfval.2 φdomS=I
dpjfval.p P=GdProjS
dpjidcl.3 φAGDProdS
dpjidcl.0 0˙=0G
dpjidcl.w W=hiISi|finSupp0˙h
dpjeq.c φxICW
Assertion dpjeq φA=GxICxIPxA=C

Proof

Step Hyp Ref Expression
1 dpjfval.1 φGdomDProdS
2 dpjfval.2 φdomS=I
3 dpjfval.p P=GdProjS
4 dpjidcl.3 φAGDProdS
5 dpjidcl.0 0˙=0G
6 dpjidcl.w W=hiISi|finSupp0˙h
7 dpjeq.c φxICW
8 1 2 3 4 5 6 dpjidcl φxIPxAWA=GxIPxA
9 8 simprd φA=GxIPxA
10 9 eqeq1d φA=GxICGxIPxA=GxIC
11 8 simpld φxIPxAW
12 5 6 1 2 11 7 dprdf11 φGxIPxA=GxICxIPxA=xIC
13 fvex PxAV
14 13 rgenw xIPxAV
15 mpteqb xIPxAVxIPxA=xICxIPxA=C
16 14 15 mp1i φxIPxA=xICxIPxA=C
17 10 12 16 3bitrd φA=GxICxIPxA=C