| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dpjfval.1 |
|
| 2 |
|
dpjfval.2 |
|
| 3 |
|
dpjfval.p |
|
| 4 |
|
dpjidcl.3 |
|
| 5 |
|
dpjidcl.0 |
|
| 6 |
|
dpjidcl.w |
|
| 7 |
5 6
|
eldprd |
|
| 8 |
2 7
|
syl |
|
| 9 |
4 8
|
mpbid |
|
| 10 |
9
|
simprd |
|
| 11 |
1
|
adantr |
|
| 12 |
2
|
adantr |
|
| 13 |
1
|
ad2antrr |
|
| 14 |
2
|
ad2antrr |
|
| 15 |
|
simpr |
|
| 16 |
13 14 3 15
|
dpjf |
|
| 17 |
4
|
ad2antrr |
|
| 18 |
16 17
|
ffvelcdmd |
|
| 19 |
1 2
|
dprddomcld |
|
| 20 |
19
|
mptexd |
|
| 21 |
20
|
adantr |
|
| 22 |
|
funmpt |
|
| 23 |
22
|
a1i |
|
| 24 |
|
simprl |
|
| 25 |
6 11 12 24
|
dprdffsupp |
|
| 26 |
|
eldifi |
|
| 27 |
|
eqid |
|
| 28 |
13 14 3 27 15
|
dpjval |
|
| 29 |
28
|
fveq1d |
|
| 30 |
26 29
|
sylan2 |
|
| 31 |
|
simplrr |
|
| 32 |
|
eqid |
|
| 33 |
|
eqid |
|
| 34 |
|
dprdgrp |
|
| 35 |
|
grpmnd |
|
| 36 |
11 34 35
|
3syl |
|
| 37 |
36
|
adantr |
|
| 38 |
19
|
ad2antrr |
|
| 39 |
6 11 12 24 32
|
dprdff |
|
| 40 |
39
|
adantr |
|
| 41 |
24
|
adantr |
|
| 42 |
6 13 14 41 33
|
dprdfcntz |
|
| 43 |
26 42
|
sylan2 |
|
| 44 |
|
snssi |
|
| 45 |
44
|
adantl |
|
| 46 |
45
|
difss2d |
|
| 47 |
|
suppssdm |
|
| 48 |
47 39
|
fssdm |
|
| 49 |
48
|
adantr |
|
| 50 |
|
ssconb |
|
| 51 |
46 49 50
|
syl2anc |
|
| 52 |
45 51
|
mpbid |
|
| 53 |
25
|
adantr |
|
| 54 |
32 5 33 37 38 40 43 52 53
|
gsumzres |
|
| 55 |
31 54
|
eqtr4d |
|
| 56 |
|
eqid |
|
| 57 |
|
difss |
|
| 58 |
57
|
a1i |
|
| 59 |
13 14 58
|
dprdres |
|
| 60 |
59
|
simpld |
|
| 61 |
13 14
|
dprdf2 |
|
| 62 |
|
fssres |
|
| 63 |
61 57 62
|
sylancl |
|
| 64 |
63
|
fdmd |
|
| 65 |
39
|
adantr |
|
| 66 |
65
|
feqmptd |
|
| 67 |
66
|
reseq1d |
|
| 68 |
|
resmpt |
|
| 69 |
57 68
|
ax-mp |
|
| 70 |
67 69
|
eqtrdi |
|
| 71 |
|
eldifi |
|
| 72 |
6 13 14 41
|
dprdfcl |
|
| 73 |
71 72
|
sylan2 |
|
| 74 |
|
fvres |
|
| 75 |
74
|
adantl |
|
| 76 |
73 75
|
eleqtrrd |
|
| 77 |
19
|
difexd |
|
| 78 |
77
|
mptexd |
|
| 79 |
78
|
ad2antrr |
|
| 80 |
|
funmpt |
|
| 81 |
80
|
a1i |
|
| 82 |
25
|
adantr |
|
| 83 |
|
ssdif |
|
| 84 |
57 83
|
ax-mp |
|
| 85 |
84
|
sseli |
|
| 86 |
|
ssidd |
|
| 87 |
19
|
ad2antrr |
|
| 88 |
5
|
fvexi |
|
| 89 |
88
|
a1i |
|
| 90 |
65 86 87 89
|
suppssr |
|
| 91 |
85 90
|
sylan2 |
|
| 92 |
77
|
ad2antrr |
|
| 93 |
91 92
|
suppss2 |
|
| 94 |
|
fsuppsssupp |
|
| 95 |
79 81 82 93 94
|
syl22anc |
|
| 96 |
56 60 64 76 95
|
dprdwd |
|
| 97 |
70 96
|
eqeltrd |
|
| 98 |
5 56 60 64 97
|
eldprdi |
|
| 99 |
26 98
|
sylan2 |
|
| 100 |
55 99
|
eqeltrd |
|
| 101 |
|
eqid |
|
| 102 |
|
eqid |
|
| 103 |
61 15
|
ffvelcdmd |
|
| 104 |
|
dprdsubg |
|
| 105 |
60 104
|
syl |
|
| 106 |
13 14 15 5
|
dpjdisj |
|
| 107 |
13 14 15 33
|
dpjcntz |
|
| 108 |
101 102 5 33 103 105 106 107 27
|
pj1rid |
|
| 109 |
26 108
|
sylanl2 |
|
| 110 |
100 109
|
mpdan |
|
| 111 |
30 110
|
eqtrd |
|
| 112 |
19
|
adantr |
|
| 113 |
111 112
|
suppss2 |
|
| 114 |
|
fsuppsssupp |
|
| 115 |
21 23 25 113 114
|
syl22anc |
|
| 116 |
6 11 12 18 115
|
dprdwd |
|
| 117 |
|
simprr |
|
| 118 |
39
|
feqmptd |
|
| 119 |
|
simplrr |
|
| 120 |
13 34 35
|
3syl |
|
| 121 |
6 13 14 41
|
dprdffsupp |
|
| 122 |
|
disjdif |
|
| 123 |
122
|
a1i |
|
| 124 |
|
undif2 |
|
| 125 |
15
|
snssd |
|
| 126 |
|
ssequn1 |
|
| 127 |
125 126
|
sylib |
|
| 128 |
124 127
|
eqtr2id |
|
| 129 |
32 5 101 33 120 87 65 42 121 123 128
|
gsumzsplit |
|
| 130 |
65 125
|
feqresmpt |
|
| 131 |
130
|
oveq2d |
|
| 132 |
65 15
|
ffvelcdmd |
|
| 133 |
|
fveq2 |
|
| 134 |
32 133
|
gsumsn |
|
| 135 |
120 15 132 134
|
syl3anc |
|
| 136 |
131 135
|
eqtrd |
|
| 137 |
136
|
oveq1d |
|
| 138 |
119 129 137
|
3eqtrd |
|
| 139 |
13 14 15 102
|
dpjlsm |
|
| 140 |
17 139
|
eleqtrd |
|
| 141 |
6 11 12 24
|
dprdfcl |
|
| 142 |
101 102 5 33 103 105 106 107 27 140 141 98
|
pj1eq |
|
| 143 |
138 142
|
mpbid |
|
| 144 |
143
|
simpld |
|
| 145 |
29 144
|
eqtrd |
|
| 146 |
145
|
mpteq2dva |
|
| 147 |
118 146
|
eqtr4d |
|
| 148 |
147
|
oveq2d |
|
| 149 |
117 148
|
eqtrd |
|
| 150 |
116 149
|
jca |
|
| 151 |
10 150
|
rexlimddv |
|