Metamath Proof Explorer


Theorem eldprdi

Description: The domain of definition of the internal direct product, which states that S is a family of subgroups that mutually commute and have trivial intersections. (Contributed by Mario Carneiro, 25-Apr-2016) (Revised by AV, 14-Jul-2019)

Ref Expression
Hypotheses eldprdi.0 0˙=0G
eldprdi.w W=hiISi|finSupp0˙h
eldprdi.1 φGdomDProdS
eldprdi.2 φdomS=I
eldprdi.3 φFW
Assertion eldprdi φGFGDProdS

Proof

Step Hyp Ref Expression
1 eldprdi.0 0˙=0G
2 eldprdi.w W=hiISi|finSupp0˙h
3 eldprdi.1 φGdomDProdS
4 eldprdi.2 φdomS=I
5 eldprdi.3 φFW
6 eqid GF=GF
7 oveq2 f=FGf=GF
8 7 rspceeqv FWGF=GFfWGF=Gf
9 5 6 8 sylancl φfWGF=Gf
10 1 2 eldprd domS=IGFGDProdSGdomDProdSfWGF=Gf
11 4 10 syl φGFGDProdSGdomDProdSfWGF=Gf
12 3 9 11 mpbir2and φGFGDProdS