Description: Take the inverse of a group sum over a family of elements of disjoint subgroups. (Contributed by Mario Carneiro, 25-Apr-2016) (Revised by AV, 14-Jul-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | eldprdi.0 | |
|
eldprdi.w | |
||
eldprdi.1 | |
||
eldprdi.2 | |
||
eldprdi.3 | |
||
dprdfinv.b | |
||
Assertion | dprdfinv | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldprdi.0 | |
|
2 | eldprdi.w | |
|
3 | eldprdi.1 | |
|
4 | eldprdi.2 | |
|
5 | eldprdi.3 | |
|
6 | dprdfinv.b | |
|
7 | dprdgrp | |
|
8 | 3 7 | syl | |
9 | eqid | |
|
10 | 9 6 | grpinvf | |
11 | 8 10 | syl | |
12 | 2 3 4 5 9 | dprdff | |
13 | fcompt | |
|
14 | 11 12 13 | syl2anc | |
15 | 3 4 | dprdf2 | |
16 | 15 | ffvelcdmda | |
17 | 2 3 4 5 | dprdfcl | |
18 | 6 | subginvcl | |
19 | 16 17 18 | syl2anc | |
20 | 3 4 | dprddomcld | |
21 | 20 | mptexd | |
22 | funmpt | |
|
23 | 22 | a1i | |
24 | 2 3 4 5 | dprdffsupp | |
25 | ssidd | |
|
26 | 1 | fvexi | |
27 | 26 | a1i | |
28 | 12 25 20 27 | suppssr | |
29 | 28 | fveq2d | |
30 | 1 6 | grpinvid | |
31 | 8 30 | syl | |
32 | 31 | adantr | |
33 | 29 32 | eqtrd | |
34 | 33 20 | suppss2 | |
35 | fsuppsssupp | |
|
36 | 21 23 24 34 35 | syl22anc | |
37 | 2 3 4 19 36 | dprdwd | |
38 | 14 37 | eqeltrd | |
39 | eqid | |
|
40 | 2 3 4 5 39 | dprdfcntz | |
41 | 9 1 39 6 8 20 12 40 24 | gsumzinv | |
42 | 38 41 | jca | |