Metamath Proof Explorer


Theorem dprdfinv

Description: Take the inverse of a group sum over a family of elements of disjoint subgroups. (Contributed by Mario Carneiro, 25-Apr-2016) (Revised by AV, 14-Jul-2019)

Ref Expression
Hypotheses eldprdi.0 0˙=0G
eldprdi.w W=hiISi|finSupp0˙h
eldprdi.1 φGdomDProdS
eldprdi.2 φdomS=I
eldprdi.3 φFW
dprdfinv.b N=invgG
Assertion dprdfinv φNFWGNF=NGF

Proof

Step Hyp Ref Expression
1 eldprdi.0 0˙=0G
2 eldprdi.w W=hiISi|finSupp0˙h
3 eldprdi.1 φGdomDProdS
4 eldprdi.2 φdomS=I
5 eldprdi.3 φFW
6 dprdfinv.b N=invgG
7 dprdgrp GdomDProdSGGrp
8 3 7 syl φGGrp
9 eqid BaseG=BaseG
10 9 6 grpinvf GGrpN:BaseGBaseG
11 8 10 syl φN:BaseGBaseG
12 2 3 4 5 9 dprdff φF:IBaseG
13 fcompt N:BaseGBaseGF:IBaseGNF=xINFx
14 11 12 13 syl2anc φNF=xINFx
15 3 4 dprdf2 φS:ISubGrpG
16 15 ffvelcdmda φxISxSubGrpG
17 2 3 4 5 dprdfcl φxIFxSx
18 6 subginvcl SxSubGrpGFxSxNFxSx
19 16 17 18 syl2anc φxINFxSx
20 3 4 dprddomcld φIV
21 20 mptexd φxINFxV
22 funmpt FunxINFx
23 22 a1i φFunxINFx
24 2 3 4 5 dprdffsupp φfinSupp0˙F
25 ssidd φFsupp0˙Fsupp0˙
26 1 fvexi 0˙V
27 26 a1i φ0˙V
28 12 25 20 27 suppssr φxIsupp0˙FFx=0˙
29 28 fveq2d φxIsupp0˙FNFx=N0˙
30 1 6 grpinvid GGrpN0˙=0˙
31 8 30 syl φN0˙=0˙
32 31 adantr φxIsupp0˙FN0˙=0˙
33 29 32 eqtrd φxIsupp0˙FNFx=0˙
34 33 20 suppss2 φxINFxsupp0˙Fsupp0˙
35 fsuppsssupp xINFxVFunxINFxfinSupp0˙FxINFxsupp0˙Fsupp0˙finSupp0˙xINFx
36 21 23 24 34 35 syl22anc φfinSupp0˙xINFx
37 2 3 4 19 36 dprdwd φxINFxW
38 14 37 eqeltrd φNFW
39 eqid CntzG=CntzG
40 2 3 4 5 39 dprdfcntz φranFCntzGranF
41 9 1 39 6 8 20 12 40 24 gsumzinv φGNF=NGF
42 38 41 jca φNFWGNF=NGF