Step |
Hyp |
Ref |
Expression |
1 |
|
eldprdi.0 |
|
2 |
|
eldprdi.w |
|
3 |
|
eldprdi.1 |
|
4 |
|
eldprdi.2 |
|
5 |
|
eldprdi.3 |
|
6 |
|
dprdfinv.b |
|
7 |
|
dprdgrp |
|
8 |
3 7
|
syl |
|
9 |
|
eqid |
|
10 |
9 6
|
grpinvf |
|
11 |
8 10
|
syl |
|
12 |
2 3 4 5 9
|
dprdff |
|
13 |
|
fcompt |
|
14 |
11 12 13
|
syl2anc |
|
15 |
3 4
|
dprdf2 |
|
16 |
15
|
ffvelrnda |
|
17 |
2 3 4 5
|
dprdfcl |
|
18 |
6
|
subginvcl |
|
19 |
16 17 18
|
syl2anc |
|
20 |
3 4
|
dprddomcld |
|
21 |
20
|
mptexd |
|
22 |
|
funmpt |
|
23 |
22
|
a1i |
|
24 |
2 3 4 5
|
dprdffsupp |
|
25 |
|
ssidd |
|
26 |
1
|
fvexi |
|
27 |
26
|
a1i |
|
28 |
12 25 20 27
|
suppssr |
|
29 |
28
|
fveq2d |
|
30 |
1 6
|
grpinvid |
|
31 |
8 30
|
syl |
|
32 |
31
|
adantr |
|
33 |
29 32
|
eqtrd |
|
34 |
33 20
|
suppss2 |
|
35 |
|
fsuppsssupp |
|
36 |
21 23 24 34 35
|
syl22anc |
|
37 |
2 3 4 19 36
|
dprdwd |
|
38 |
14 37
|
eqeltrd |
|
39 |
|
eqid |
|
40 |
2 3 4 5 39
|
dprdfcntz |
|
41 |
9 1 39 6 8 20 12 40 24
|
gsumzinv |
|
42 |
38 41
|
jca |
|