Metamath Proof Explorer


Theorem dprddomcld

Description: If a family of subgroups is a family of subgroups for an internal direct product, then it is indexed by a set. (Contributed by AV, 13-Jul-2019)

Ref Expression
Hypotheses dprddomcld.1 φGdomDProdS
dprddomcld.2 φdomS=I
Assertion dprddomcld φIV

Proof

Step Hyp Ref Expression
1 dprddomcld.1 φGdomDProdS
2 dprddomcld.2 φdomS=I
3 df-nel domSV¬domSV
4 dprddomprc domSV¬GdomDProdS
5 3 4 sylbir ¬domSV¬GdomDProdS
6 5 con4i GdomDProdSdomSV
7 eleq1 domS=IdomSVIV
8 6 7 imbitrid domS=IGdomDProdSIV
9 2 1 8 sylc φIV