Metamath Proof Explorer


Theorem dprdffsupp

Description: A finitely supported function in S is a finitely supported function. (Contributed by Mario Carneiro, 25-Apr-2016) (Revised by AV, 11-Jul-2019)

Ref Expression
Hypotheses dprdff.w W=hiISi|finSupp0˙h
dprdff.1 φGdomDProdS
dprdff.2 φdomS=I
dprdff.3 φFW
Assertion dprdffsupp φfinSupp0˙F

Proof

Step Hyp Ref Expression
1 dprdff.w W=hiISi|finSupp0˙h
2 dprdff.1 φGdomDProdS
3 dprdff.2 φdomS=I
4 dprdff.3 φFW
5 1 2 3 dprdw φFWFFnIxIFxSxfinSupp0˙F
6 4 5 mpbid φFFnIxIFxSxfinSupp0˙F
7 6 simp3d φfinSupp0˙F