Metamath Proof Explorer


Theorem dprdw

Description: The property of being a finitely supported function in the family S . (Contributed by Mario Carneiro, 25-Apr-2016) (Revised by AV, 11-Jul-2019)

Ref Expression
Hypotheses dprdff.w W=hiISi|finSupp0˙h
dprdff.1 φGdomDProdS
dprdff.2 φdomS=I
Assertion dprdw φFWFFnIxIFxSxfinSupp0˙F

Proof

Step Hyp Ref Expression
1 dprdff.w W=hiISi|finSupp0˙h
2 dprdff.1 φGdomDProdS
3 dprdff.2 φdomS=I
4 elex FiISiFV
5 4 a1i φFiISiFV
6 2 3 dprddomcld φIV
7 fnex FFnIIVFV
8 7 expcom IVFFnIFV
9 6 8 syl φFFnIFV
10 9 adantrd φFFnIxIFxSxFV
11 fveq2 i=xSi=Sx
12 11 cbvixpv iISi=xISx
13 12 eleq2i FiISiFxISx
14 elixp2 FxISxFVFFnIxIFxSx
15 3anass FVFFnIxIFxSxFVFFnIxIFxSx
16 13 14 15 3bitri FiISiFVFFnIxIFxSx
17 16 baib FVFiISiFFnIxIFxSx
18 17 a1i φFVFiISiFFnIxIFxSx
19 5 10 18 pm5.21ndd φFiISiFFnIxIFxSx
20 19 anbi1d φFiISifinSupp0˙FFFnIxIFxSxfinSupp0˙F
21 breq1 h=FfinSupp0˙hfinSupp0˙F
22 21 1 elrab2 FWFiISifinSupp0˙F
23 df-3an FFnIxIFxSxfinSupp0˙FFFnIxIFxSxfinSupp0˙F
24 20 22 23 3bitr4g φFWFFnIxIFxSxfinSupp0˙F