Metamath Proof Explorer


Theorem dprdfcntz

Description: A function on the elements of an internal direct product has pairwise commuting values. (Contributed by Mario Carneiro, 25-Apr-2016) (Revised by AV, 11-Jul-2019)

Ref Expression
Hypotheses dprdff.w W=hiISi|finSupp0˙h
dprdff.1 φGdomDProdS
dprdff.2 φdomS=I
dprdff.3 φFW
dprdfcntz.z Z=CntzG
Assertion dprdfcntz φranFZranF

Proof

Step Hyp Ref Expression
1 dprdff.w W=hiISi|finSupp0˙h
2 dprdff.1 φGdomDProdS
3 dprdff.2 φdomS=I
4 dprdff.3 φFW
5 dprdfcntz.z Z=CntzG
6 eqid BaseG=BaseG
7 1 2 3 4 6 dprdff φF:IBaseG
8 7 ffnd φFFnI
9 7 ffvelcdmda φyIFyBaseG
10 simpr φyIzIy=zy=z
11 10 fveq2d φyIzIy=zFy=Fz
12 10 equcomd φyIzIy=zz=y
13 12 fveq2d φyIzIy=zFz=Fy
14 11 13 oveq12d φyIzIy=zFy+GFz=Fz+GFy
15 2 ad3antrrr φyIzIyzGdomDProdS
16 3 ad3antrrr φyIzIyzdomS=I
17 simpllr φyIzIyzyI
18 simplr φyIzIyzzI
19 simpr φyIzIyzyz
20 15 16 17 18 19 5 dprdcntz φyIzIyzSyZSz
21 1 2 3 4 dprdfcl φyIFySy
22 21 ad2antrr φyIzIyzFySy
23 20 22 sseldd φyIzIyzFyZSz
24 1 2 3 4 dprdfcl φzIFzSz
25 24 ad4ant13 φyIzIyzFzSz
26 eqid +G=+G
27 26 5 cntzi FyZSzFzSzFy+GFz=Fz+GFy
28 23 25 27 syl2anc φyIzIyzFy+GFz=Fz+GFy
29 14 28 pm2.61dane φyIzIFy+GFz=Fz+GFy
30 29 ralrimiva φyIzIFy+GFz=Fz+GFy
31 8 adantr φyIFFnI
32 oveq2 x=FzFy+Gx=Fy+GFz
33 oveq1 x=Fzx+GFy=Fz+GFy
34 32 33 eqeq12d x=FzFy+Gx=x+GFyFy+GFz=Fz+GFy
35 34 ralrn FFnIxranFFy+Gx=x+GFyzIFy+GFz=Fz+GFy
36 31 35 syl φyIxranFFy+Gx=x+GFyzIFy+GFz=Fz+GFy
37 30 36 mpbird φyIxranFFy+Gx=x+GFy
38 7 frnd φranFBaseG
39 38 adantr φyIranFBaseG
40 6 26 5 elcntz ranFBaseGFyZranFFyBaseGxranFFy+Gx=x+GFy
41 39 40 syl φyIFyZranFFyBaseGxranFFy+Gx=x+GFy
42 9 37 41 mpbir2and φyIFyZranF
43 42 ralrimiva φyIFyZranF
44 ffnfv F:IZranFFFnIyIFyZranF
45 8 43 44 sylanbrc φF:IZranF
46 45 frnd φranFZranF