Metamath Proof Explorer


Theorem dprdff

Description: A finitely supported function in S is a function into the base. (Contributed by Mario Carneiro, 25-Apr-2016) (Revised by AV, 11-Jul-2019)

Ref Expression
Hypotheses dprdff.w W=hiISi|finSupp0˙h
dprdff.1 φGdomDProdS
dprdff.2 φdomS=I
dprdff.3 φFW
dprdff.b B=BaseG
Assertion dprdff φF:IB

Proof

Step Hyp Ref Expression
1 dprdff.w W=hiISi|finSupp0˙h
2 dprdff.1 φGdomDProdS
3 dprdff.2 φdomS=I
4 dprdff.3 φFW
5 dprdff.b B=BaseG
6 1 2 3 dprdw φFWFFnIxIFxSxfinSupp0˙F
7 4 6 mpbid φFFnIxIFxSxfinSupp0˙F
8 7 simp1d φFFnI
9 7 simp2d φxIFxSx
10 2 3 dprdf2 φS:ISubGrpG
11 10 ffvelcdmda φxISxSubGrpG
12 5 subgss SxSubGrpGSxB
13 11 12 syl φxISxB
14 13 sseld φxIFxSxFxB
15 14 ralimdva φxIFxSxxIFxB
16 9 15 mpd φxIFxB
17 ffnfv F:IBFFnIxIFxB
18 8 16 17 sylanbrc φF:IB