Description: The internal direct product of a family of subgroups is a subset of the base. (Contributed by Mario Carneiro, 25-Apr-2016)
Ref | Expression | ||
---|---|---|---|
Hypothesis | dprdssv.b | |
|
Assertion | dprdssv | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dprdssv.b | |
|
2 | eqid | |
|
3 | eqid | |
|
4 | eqid | |
|
5 | 3 4 | eldprd | |
6 | 2 5 | ax-mp | |
7 | eqid | |
|
8 | dprdgrp | |
|
9 | 8 | grpmndd | |
10 | 9 | adantr | |
11 | reldmdprd | |
|
12 | 11 | brrelex2i | |
13 | 12 | dmexd | |
14 | 13 | adantr | |
15 | simpl | |
|
16 | eqidd | |
|
17 | simpr | |
|
18 | 4 15 16 17 1 | dprdff | |
19 | 4 15 16 17 7 | dprdfcntz | |
20 | 4 15 16 17 | dprdffsupp | |
21 | 1 3 7 10 14 18 19 20 | gsumzcl | |
22 | eleq1 | |
|
23 | 21 22 | syl5ibrcom | |
24 | 23 | rexlimdva | |
25 | 24 | imp | |
26 | 6 25 | sylbi | |
27 | 26 | ssriv | |