Metamath Proof Explorer


Theorem dprdssv

Description: The internal direct product of a family of subgroups is a subset of the base. (Contributed by Mario Carneiro, 25-Apr-2016)

Ref Expression
Hypothesis dprdssv.b B = Base G
Assertion dprdssv G DProd S B

Proof

Step Hyp Ref Expression
1 dprdssv.b B = Base G
2 eqid dom S = dom S
3 eqid 0 G = 0 G
4 eqid h i dom S S i | finSupp 0 G h = h i dom S S i | finSupp 0 G h
5 3 4 eldprd dom S = dom S x G DProd S G dom DProd S f h i dom S S i | finSupp 0 G h x = G f
6 2 5 ax-mp x G DProd S G dom DProd S f h i dom S S i | finSupp 0 G h x = G f
7 eqid Cntz G = Cntz G
8 dprdgrp G dom DProd S G Grp
9 grpmnd G Grp G Mnd
10 8 9 syl G dom DProd S G Mnd
11 10 adantr G dom DProd S f h i dom S S i | finSupp 0 G h G Mnd
12 reldmdprd Rel dom DProd
13 12 brrelex2i G dom DProd S S V
14 13 dmexd G dom DProd S dom S V
15 14 adantr G dom DProd S f h i dom S S i | finSupp 0 G h dom S V
16 simpl G dom DProd S f h i dom S S i | finSupp 0 G h G dom DProd S
17 eqidd G dom DProd S f h i dom S S i | finSupp 0 G h dom S = dom S
18 simpr G dom DProd S f h i dom S S i | finSupp 0 G h f h i dom S S i | finSupp 0 G h
19 4 16 17 18 1 dprdff G dom DProd S f h i dom S S i | finSupp 0 G h f : dom S B
20 4 16 17 18 7 dprdfcntz G dom DProd S f h i dom S S i | finSupp 0 G h ran f Cntz G ran f
21 4 16 17 18 dprdffsupp G dom DProd S f h i dom S S i | finSupp 0 G h finSupp 0 G f
22 1 3 7 11 15 19 20 21 gsumzcl G dom DProd S f h i dom S S i | finSupp 0 G h G f B
23 eleq1 x = G f x B G f B
24 22 23 syl5ibrcom G dom DProd S f h i dom S S i | finSupp 0 G h x = G f x B
25 24 rexlimdva G dom DProd S f h i dom S S i | finSupp 0 G h x = G f x B
26 25 imp G dom DProd S f h i dom S S i | finSupp 0 G h x = G f x B
27 6 26 sylbi x G DProd S x B
28 27 ssriv G DProd S B