Metamath Proof Explorer


Theorem dprdssv

Description: The internal direct product of a family of subgroups is a subset of the base. (Contributed by Mario Carneiro, 25-Apr-2016)

Ref Expression
Hypothesis dprdssv.b B=BaseG
Assertion dprdssv GDProdSB

Proof

Step Hyp Ref Expression
1 dprdssv.b B=BaseG
2 eqid domS=domS
3 eqid 0G=0G
4 eqid hidomSSi|finSupp0Gh=hidomSSi|finSupp0Gh
5 3 4 eldprd domS=domSxGDProdSGdomDProdSfhidomSSi|finSupp0Ghx=Gf
6 2 5 ax-mp xGDProdSGdomDProdSfhidomSSi|finSupp0Ghx=Gf
7 eqid CntzG=CntzG
8 dprdgrp GdomDProdSGGrp
9 8 grpmndd GdomDProdSGMnd
10 9 adantr GdomDProdSfhidomSSi|finSupp0GhGMnd
11 reldmdprd ReldomDProd
12 11 brrelex2i GdomDProdSSV
13 12 dmexd GdomDProdSdomSV
14 13 adantr GdomDProdSfhidomSSi|finSupp0GhdomSV
15 simpl GdomDProdSfhidomSSi|finSupp0GhGdomDProdS
16 eqidd GdomDProdSfhidomSSi|finSupp0GhdomS=domS
17 simpr GdomDProdSfhidomSSi|finSupp0GhfhidomSSi|finSupp0Gh
18 4 15 16 17 1 dprdff GdomDProdSfhidomSSi|finSupp0Ghf:domSB
19 4 15 16 17 7 dprdfcntz GdomDProdSfhidomSSi|finSupp0GhranfCntzGranf
20 4 15 16 17 dprdffsupp GdomDProdSfhidomSSi|finSupp0GhfinSupp0Gf
21 1 3 7 10 14 18 19 20 gsumzcl GdomDProdSfhidomSSi|finSupp0GhGfB
22 eleq1 x=GfxBGfB
23 21 22 syl5ibrcom GdomDProdSfhidomSSi|finSupp0Ghx=GfxB
24 23 rexlimdva GdomDProdSfhidomSSi|finSupp0Ghx=GfxB
25 24 imp GdomDProdSfhidomSSi|finSupp0Ghx=GfxB
26 6 25 sylbi xGDProdSxB
27 26 ssriv GDProdSB