Step |
Hyp |
Ref |
Expression |
1 |
|
dprdssv.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
eqid |
⊢ dom 𝑆 = dom 𝑆 |
3 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
4 |
|
eqid |
⊢ { ℎ ∈ X 𝑖 ∈ dom 𝑆 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } = { ℎ ∈ X 𝑖 ∈ dom 𝑆 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } |
5 |
3 4
|
eldprd |
⊢ ( dom 𝑆 = dom 𝑆 → ( 𝑥 ∈ ( 𝐺 DProd 𝑆 ) ↔ ( 𝐺 dom DProd 𝑆 ∧ ∃ 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑆 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } 𝑥 = ( 𝐺 Σg 𝑓 ) ) ) ) |
6 |
2 5
|
ax-mp |
⊢ ( 𝑥 ∈ ( 𝐺 DProd 𝑆 ) ↔ ( 𝐺 dom DProd 𝑆 ∧ ∃ 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑆 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } 𝑥 = ( 𝐺 Σg 𝑓 ) ) ) |
7 |
|
eqid |
⊢ ( Cntz ‘ 𝐺 ) = ( Cntz ‘ 𝐺 ) |
8 |
|
dprdgrp |
⊢ ( 𝐺 dom DProd 𝑆 → 𝐺 ∈ Grp ) |
9 |
8
|
grpmndd |
⊢ ( 𝐺 dom DProd 𝑆 → 𝐺 ∈ Mnd ) |
10 |
9
|
adantr |
⊢ ( ( 𝐺 dom DProd 𝑆 ∧ 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑆 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ) → 𝐺 ∈ Mnd ) |
11 |
|
reldmdprd |
⊢ Rel dom DProd |
12 |
11
|
brrelex2i |
⊢ ( 𝐺 dom DProd 𝑆 → 𝑆 ∈ V ) |
13 |
12
|
dmexd |
⊢ ( 𝐺 dom DProd 𝑆 → dom 𝑆 ∈ V ) |
14 |
13
|
adantr |
⊢ ( ( 𝐺 dom DProd 𝑆 ∧ 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑆 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ) → dom 𝑆 ∈ V ) |
15 |
|
simpl |
⊢ ( ( 𝐺 dom DProd 𝑆 ∧ 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑆 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ) → 𝐺 dom DProd 𝑆 ) |
16 |
|
eqidd |
⊢ ( ( 𝐺 dom DProd 𝑆 ∧ 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑆 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ) → dom 𝑆 = dom 𝑆 ) |
17 |
|
simpr |
⊢ ( ( 𝐺 dom DProd 𝑆 ∧ 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑆 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ) → 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑆 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ) |
18 |
4 15 16 17 1
|
dprdff |
⊢ ( ( 𝐺 dom DProd 𝑆 ∧ 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑆 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ) → 𝑓 : dom 𝑆 ⟶ 𝐵 ) |
19 |
4 15 16 17 7
|
dprdfcntz |
⊢ ( ( 𝐺 dom DProd 𝑆 ∧ 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑆 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ) → ran 𝑓 ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ran 𝑓 ) ) |
20 |
4 15 16 17
|
dprdffsupp |
⊢ ( ( 𝐺 dom DProd 𝑆 ∧ 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑆 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ) → 𝑓 finSupp ( 0g ‘ 𝐺 ) ) |
21 |
1 3 7 10 14 18 19 20
|
gsumzcl |
⊢ ( ( 𝐺 dom DProd 𝑆 ∧ 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑆 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ) → ( 𝐺 Σg 𝑓 ) ∈ 𝐵 ) |
22 |
|
eleq1 |
⊢ ( 𝑥 = ( 𝐺 Σg 𝑓 ) → ( 𝑥 ∈ 𝐵 ↔ ( 𝐺 Σg 𝑓 ) ∈ 𝐵 ) ) |
23 |
21 22
|
syl5ibrcom |
⊢ ( ( 𝐺 dom DProd 𝑆 ∧ 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑆 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ) → ( 𝑥 = ( 𝐺 Σg 𝑓 ) → 𝑥 ∈ 𝐵 ) ) |
24 |
23
|
rexlimdva |
⊢ ( 𝐺 dom DProd 𝑆 → ( ∃ 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑆 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } 𝑥 = ( 𝐺 Σg 𝑓 ) → 𝑥 ∈ 𝐵 ) ) |
25 |
24
|
imp |
⊢ ( ( 𝐺 dom DProd 𝑆 ∧ ∃ 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑆 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } 𝑥 = ( 𝐺 Σg 𝑓 ) ) → 𝑥 ∈ 𝐵 ) |
26 |
6 25
|
sylbi |
⊢ ( 𝑥 ∈ ( 𝐺 DProd 𝑆 ) → 𝑥 ∈ 𝐵 ) |
27 |
26
|
ssriv |
⊢ ( 𝐺 DProd 𝑆 ) ⊆ 𝐵 |