| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dprdssv.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
| 2 |
|
eqid |
⊢ dom 𝑆 = dom 𝑆 |
| 3 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
| 4 |
|
eqid |
⊢ { ℎ ∈ X 𝑖 ∈ dom 𝑆 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } = { ℎ ∈ X 𝑖 ∈ dom 𝑆 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } |
| 5 |
3 4
|
eldprd |
⊢ ( dom 𝑆 = dom 𝑆 → ( 𝑥 ∈ ( 𝐺 DProd 𝑆 ) ↔ ( 𝐺 dom DProd 𝑆 ∧ ∃ 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑆 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } 𝑥 = ( 𝐺 Σg 𝑓 ) ) ) ) |
| 6 |
2 5
|
ax-mp |
⊢ ( 𝑥 ∈ ( 𝐺 DProd 𝑆 ) ↔ ( 𝐺 dom DProd 𝑆 ∧ ∃ 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑆 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } 𝑥 = ( 𝐺 Σg 𝑓 ) ) ) |
| 7 |
|
eqid |
⊢ ( Cntz ‘ 𝐺 ) = ( Cntz ‘ 𝐺 ) |
| 8 |
|
dprdgrp |
⊢ ( 𝐺 dom DProd 𝑆 → 𝐺 ∈ Grp ) |
| 9 |
8
|
grpmndd |
⊢ ( 𝐺 dom DProd 𝑆 → 𝐺 ∈ Mnd ) |
| 10 |
9
|
adantr |
⊢ ( ( 𝐺 dom DProd 𝑆 ∧ 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑆 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ) → 𝐺 ∈ Mnd ) |
| 11 |
|
reldmdprd |
⊢ Rel dom DProd |
| 12 |
11
|
brrelex2i |
⊢ ( 𝐺 dom DProd 𝑆 → 𝑆 ∈ V ) |
| 13 |
12
|
dmexd |
⊢ ( 𝐺 dom DProd 𝑆 → dom 𝑆 ∈ V ) |
| 14 |
13
|
adantr |
⊢ ( ( 𝐺 dom DProd 𝑆 ∧ 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑆 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ) → dom 𝑆 ∈ V ) |
| 15 |
|
simpl |
⊢ ( ( 𝐺 dom DProd 𝑆 ∧ 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑆 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ) → 𝐺 dom DProd 𝑆 ) |
| 16 |
|
eqidd |
⊢ ( ( 𝐺 dom DProd 𝑆 ∧ 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑆 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ) → dom 𝑆 = dom 𝑆 ) |
| 17 |
|
simpr |
⊢ ( ( 𝐺 dom DProd 𝑆 ∧ 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑆 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ) → 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑆 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ) |
| 18 |
4 15 16 17 1
|
dprdff |
⊢ ( ( 𝐺 dom DProd 𝑆 ∧ 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑆 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ) → 𝑓 : dom 𝑆 ⟶ 𝐵 ) |
| 19 |
4 15 16 17 7
|
dprdfcntz |
⊢ ( ( 𝐺 dom DProd 𝑆 ∧ 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑆 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ) → ran 𝑓 ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ran 𝑓 ) ) |
| 20 |
4 15 16 17
|
dprdffsupp |
⊢ ( ( 𝐺 dom DProd 𝑆 ∧ 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑆 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ) → 𝑓 finSupp ( 0g ‘ 𝐺 ) ) |
| 21 |
1 3 7 10 14 18 19 20
|
gsumzcl |
⊢ ( ( 𝐺 dom DProd 𝑆 ∧ 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑆 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ) → ( 𝐺 Σg 𝑓 ) ∈ 𝐵 ) |
| 22 |
|
eleq1 |
⊢ ( 𝑥 = ( 𝐺 Σg 𝑓 ) → ( 𝑥 ∈ 𝐵 ↔ ( 𝐺 Σg 𝑓 ) ∈ 𝐵 ) ) |
| 23 |
21 22
|
syl5ibrcom |
⊢ ( ( 𝐺 dom DProd 𝑆 ∧ 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑆 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ) → ( 𝑥 = ( 𝐺 Σg 𝑓 ) → 𝑥 ∈ 𝐵 ) ) |
| 24 |
23
|
rexlimdva |
⊢ ( 𝐺 dom DProd 𝑆 → ( ∃ 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑆 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } 𝑥 = ( 𝐺 Σg 𝑓 ) → 𝑥 ∈ 𝐵 ) ) |
| 25 |
24
|
imp |
⊢ ( ( 𝐺 dom DProd 𝑆 ∧ ∃ 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑆 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } 𝑥 = ( 𝐺 Σg 𝑓 ) ) → 𝑥 ∈ 𝐵 ) |
| 26 |
6 25
|
sylbi |
⊢ ( 𝑥 ∈ ( 𝐺 DProd 𝑆 ) → 𝑥 ∈ 𝐵 ) |
| 27 |
26
|
ssriv |
⊢ ( 𝐺 DProd 𝑆 ) ⊆ 𝐵 |