Metamath Proof Explorer


Theorem dprdssv

Description: The internal direct product of a family of subgroups is a subset of the base. (Contributed by Mario Carneiro, 25-Apr-2016)

Ref Expression
Hypothesis dprdssv.b 𝐵 = ( Base ‘ 𝐺 )
Assertion dprdssv ( 𝐺 DProd 𝑆 ) ⊆ 𝐵

Proof

Step Hyp Ref Expression
1 dprdssv.b 𝐵 = ( Base ‘ 𝐺 )
2 eqid dom 𝑆 = dom 𝑆
3 eqid ( 0g𝐺 ) = ( 0g𝐺 )
4 eqid { X 𝑖 ∈ dom 𝑆 ( 𝑆𝑖 ) ∣ finSupp ( 0g𝐺 ) } = { X 𝑖 ∈ dom 𝑆 ( 𝑆𝑖 ) ∣ finSupp ( 0g𝐺 ) }
5 3 4 eldprd ( dom 𝑆 = dom 𝑆 → ( 𝑥 ∈ ( 𝐺 DProd 𝑆 ) ↔ ( 𝐺 dom DProd 𝑆 ∧ ∃ 𝑓 ∈ { X 𝑖 ∈ dom 𝑆 ( 𝑆𝑖 ) ∣ finSupp ( 0g𝐺 ) } 𝑥 = ( 𝐺 Σg 𝑓 ) ) ) )
6 2 5 ax-mp ( 𝑥 ∈ ( 𝐺 DProd 𝑆 ) ↔ ( 𝐺 dom DProd 𝑆 ∧ ∃ 𝑓 ∈ { X 𝑖 ∈ dom 𝑆 ( 𝑆𝑖 ) ∣ finSupp ( 0g𝐺 ) } 𝑥 = ( 𝐺 Σg 𝑓 ) ) )
7 eqid ( Cntz ‘ 𝐺 ) = ( Cntz ‘ 𝐺 )
8 dprdgrp ( 𝐺 dom DProd 𝑆𝐺 ∈ Grp )
9 grpmnd ( 𝐺 ∈ Grp → 𝐺 ∈ Mnd )
10 8 9 syl ( 𝐺 dom DProd 𝑆𝐺 ∈ Mnd )
11 10 adantr ( ( 𝐺 dom DProd 𝑆𝑓 ∈ { X 𝑖 ∈ dom 𝑆 ( 𝑆𝑖 ) ∣ finSupp ( 0g𝐺 ) } ) → 𝐺 ∈ Mnd )
12 reldmdprd Rel dom DProd
13 12 brrelex2i ( 𝐺 dom DProd 𝑆𝑆 ∈ V )
14 13 dmexd ( 𝐺 dom DProd 𝑆 → dom 𝑆 ∈ V )
15 14 adantr ( ( 𝐺 dom DProd 𝑆𝑓 ∈ { X 𝑖 ∈ dom 𝑆 ( 𝑆𝑖 ) ∣ finSupp ( 0g𝐺 ) } ) → dom 𝑆 ∈ V )
16 simpl ( ( 𝐺 dom DProd 𝑆𝑓 ∈ { X 𝑖 ∈ dom 𝑆 ( 𝑆𝑖 ) ∣ finSupp ( 0g𝐺 ) } ) → 𝐺 dom DProd 𝑆 )
17 eqidd ( ( 𝐺 dom DProd 𝑆𝑓 ∈ { X 𝑖 ∈ dom 𝑆 ( 𝑆𝑖 ) ∣ finSupp ( 0g𝐺 ) } ) → dom 𝑆 = dom 𝑆 )
18 simpr ( ( 𝐺 dom DProd 𝑆𝑓 ∈ { X 𝑖 ∈ dom 𝑆 ( 𝑆𝑖 ) ∣ finSupp ( 0g𝐺 ) } ) → 𝑓 ∈ { X 𝑖 ∈ dom 𝑆 ( 𝑆𝑖 ) ∣ finSupp ( 0g𝐺 ) } )
19 4 16 17 18 1 dprdff ( ( 𝐺 dom DProd 𝑆𝑓 ∈ { X 𝑖 ∈ dom 𝑆 ( 𝑆𝑖 ) ∣ finSupp ( 0g𝐺 ) } ) → 𝑓 : dom 𝑆𝐵 )
20 4 16 17 18 7 dprdfcntz ( ( 𝐺 dom DProd 𝑆𝑓 ∈ { X 𝑖 ∈ dom 𝑆 ( 𝑆𝑖 ) ∣ finSupp ( 0g𝐺 ) } ) → ran 𝑓 ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ran 𝑓 ) )
21 4 16 17 18 dprdffsupp ( ( 𝐺 dom DProd 𝑆𝑓 ∈ { X 𝑖 ∈ dom 𝑆 ( 𝑆𝑖 ) ∣ finSupp ( 0g𝐺 ) } ) → 𝑓 finSupp ( 0g𝐺 ) )
22 1 3 7 11 15 19 20 21 gsumzcl ( ( 𝐺 dom DProd 𝑆𝑓 ∈ { X 𝑖 ∈ dom 𝑆 ( 𝑆𝑖 ) ∣ finSupp ( 0g𝐺 ) } ) → ( 𝐺 Σg 𝑓 ) ∈ 𝐵 )
23 eleq1 ( 𝑥 = ( 𝐺 Σg 𝑓 ) → ( 𝑥𝐵 ↔ ( 𝐺 Σg 𝑓 ) ∈ 𝐵 ) )
24 22 23 syl5ibrcom ( ( 𝐺 dom DProd 𝑆𝑓 ∈ { X 𝑖 ∈ dom 𝑆 ( 𝑆𝑖 ) ∣ finSupp ( 0g𝐺 ) } ) → ( 𝑥 = ( 𝐺 Σg 𝑓 ) → 𝑥𝐵 ) )
25 24 rexlimdva ( 𝐺 dom DProd 𝑆 → ( ∃ 𝑓 ∈ { X 𝑖 ∈ dom 𝑆 ( 𝑆𝑖 ) ∣ finSupp ( 0g𝐺 ) } 𝑥 = ( 𝐺 Σg 𝑓 ) → 𝑥𝐵 ) )
26 25 imp ( ( 𝐺 dom DProd 𝑆 ∧ ∃ 𝑓 ∈ { X 𝑖 ∈ dom 𝑆 ( 𝑆𝑖 ) ∣ finSupp ( 0g𝐺 ) } 𝑥 = ( 𝐺 Σg 𝑓 ) ) → 𝑥𝐵 )
27 6 26 sylbi ( 𝑥 ∈ ( 𝐺 DProd 𝑆 ) → 𝑥𝐵 )
28 27 ssriv ( 𝐺 DProd 𝑆 ) ⊆ 𝐵