Metamath Proof Explorer


Theorem reldmdprd

Description: The domain of the internal direct product operation is a relation. (Contributed by Mario Carneiro, 25-Apr-2016) (Proof shortened by AV, 11-Jul-2019)

Ref Expression
Assertion reldmdprd ReldomDProd

Proof

Step Hyp Ref Expression
1 df-dprd DProd=gGrp,sh|h:domhSubGrpgxdomhydomhxhxCntzghyhxmrClsSubGrpghdomhx=0granfhxdomssx|finSupp0ghgf
2 1 reldmmpo ReldomDProd