| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gsumzinv.b |
|
| 2 |
|
gsumzinv.0 |
|
| 3 |
|
gsumzinv.z |
|
| 4 |
|
gsumzinv.i |
|
| 5 |
|
gsumzinv.g |
|
| 6 |
|
gsumzinv.a |
|
| 7 |
|
gsumzinv.f |
|
| 8 |
|
gsumzinv.c |
|
| 9 |
|
gsumzinv.n |
|
| 10 |
|
eqid |
|
| 11 |
5
|
grpmndd |
|
| 12 |
1 4
|
grpinvf |
|
| 13 |
5 12
|
syl |
|
| 14 |
|
fco |
|
| 15 |
13 7 14
|
syl2anc |
|
| 16 |
10 4
|
invoppggim |
|
| 17 |
|
gimghm |
|
| 18 |
|
ghmmhm |
|
| 19 |
5 16 17 18
|
4syl |
|
| 20 |
|
eqid |
|
| 21 |
3 20
|
cntzmhm2 |
|
| 22 |
19 8 21
|
syl2anc |
|
| 23 |
|
rnco2 |
|
| 24 |
23
|
fveq2i |
|
| 25 |
10 3
|
oppgcntz |
|
| 26 |
24 25
|
eqtri |
|
| 27 |
22 23 26
|
3sstr4g |
|
| 28 |
2
|
fvexi |
|
| 29 |
28
|
a1i |
|
| 30 |
1
|
fvexi |
|
| 31 |
30
|
a1i |
|
| 32 |
2 4
|
grpinvid |
|
| 33 |
5 32
|
syl |
|
| 34 |
29 7 13 6 31 9 33
|
fsuppco2 |
|
| 35 |
1 2 3 10 11 6 15 27 34
|
gsumzoppg |
|
| 36 |
10
|
oppgmnd |
|
| 37 |
11 36
|
syl |
|
| 38 |
1 3 11 37 6 19 7 8 2 9
|
gsumzmhm |
|
| 39 |
35 38
|
eqtr3d |
|