Metamath Proof Explorer


Theorem cntzmhm2

Description: Centralizers in a monoid are preserved by monoid homomorphisms. (Contributed by Mario Carneiro, 24-Apr-2016)

Ref Expression
Hypotheses cntzmhm.z Z = Cntz G
cntzmhm.y Y = Cntz H
Assertion cntzmhm2 F G MndHom H S Z T F S Y F T

Proof

Step Hyp Ref Expression
1 cntzmhm.z Z = Cntz G
2 cntzmhm.y Y = Cntz H
3 1 2 cntzmhm F G MndHom H x Z T F x Y F T
4 3 ralrimiva F G MndHom H x Z T F x Y F T
5 ssralv S Z T x Z T F x Y F T x S F x Y F T
6 4 5 mpan9 F G MndHom H S Z T x S F x Y F T
7 eqid Base G = Base G
8 eqid Base H = Base H
9 7 8 mhmf F G MndHom H F : Base G Base H
10 9 adantr F G MndHom H S Z T F : Base G Base H
11 10 ffund F G MndHom H S Z T Fun F
12 simpr F G MndHom H S Z T S Z T
13 7 1 cntzssv Z T Base G
14 12 13 sstrdi F G MndHom H S Z T S Base G
15 10 fdmd F G MndHom H S Z T dom F = Base G
16 14 15 sseqtrrd F G MndHom H S Z T S dom F
17 funimass4 Fun F S dom F F S Y F T x S F x Y F T
18 11 16 17 syl2anc F G MndHom H S Z T F S Y F T x S F x Y F T
19 6 18 mpbird F G MndHom H S Z T F S Y F T