Metamath Proof Explorer


Theorem gsumzoppg

Description: The opposite of a group sum is the same as the original. (Contributed by Mario Carneiro, 25-Apr-2016) (Revised by AV, 6-Jun-2019)

Ref Expression
Hypotheses gsumzoppg.b B = Base G
gsumzoppg.0 0 ˙ = 0 G
gsumzoppg.z Z = Cntz G
gsumzoppg.o O = opp 𝑔 G
gsumzoppg.g φ G Mnd
gsumzoppg.a φ A V
gsumzoppg.f φ F : A B
gsumzoppg.c φ ran F Z ran F
gsumzoppg.n φ finSupp 0 ˙ F
Assertion gsumzoppg φ O F = G F

Proof

Step Hyp Ref Expression
1 gsumzoppg.b B = Base G
2 gsumzoppg.0 0 ˙ = 0 G
3 gsumzoppg.z Z = Cntz G
4 gsumzoppg.o O = opp 𝑔 G
5 gsumzoppg.g φ G Mnd
6 gsumzoppg.a φ A V
7 gsumzoppg.f φ F : A B
8 gsumzoppg.c φ ran F Z ran F
9 gsumzoppg.n φ finSupp 0 ˙ F
10 4 oppgmnd G Mnd O Mnd
11 5 10 syl φ O Mnd
12 4 2 oppgid 0 ˙ = 0 O
13 12 gsumz O Mnd A V O k A 0 ˙ = 0 ˙
14 11 6 13 syl2anc φ O k A 0 ˙ = 0 ˙
15 2 gsumz G Mnd A V G k A 0 ˙ = 0 ˙
16 5 6 15 syl2anc φ G k A 0 ˙ = 0 ˙
17 14 16 eqtr4d φ O k A 0 ˙ = G k A 0 ˙
18 17 adantr φ F -1 V 0 ˙ = O k A 0 ˙ = G k A 0 ˙
19 2 fvexi 0 ˙ V
20 19 a1i φ 0 ˙ V
21 ssid F -1 V 0 ˙ F -1 V 0 ˙
22 fex F : A B A V F V
23 7 6 22 syl2anc φ F V
24 suppimacnv F V 0 ˙ V F supp 0 ˙ = F -1 V 0 ˙
25 23 19 24 sylancl φ F supp 0 ˙ = F -1 V 0 ˙
26 25 sseq1d φ F supp 0 ˙ F -1 V 0 ˙ F -1 V 0 ˙ F -1 V 0 ˙
27 21 26 mpbiri φ F supp 0 ˙ F -1 V 0 ˙
28 7 6 20 27 gsumcllem φ F -1 V 0 ˙ = F = k A 0 ˙
29 28 oveq2d φ F -1 V 0 ˙ = O F = O k A 0 ˙
30 28 oveq2d φ F -1 V 0 ˙ = G F = G k A 0 ˙
31 18 29 30 3eqtr4d φ F -1 V 0 ˙ = O F = G F
32 31 ex φ F -1 V 0 ˙ = O F = G F
33 simprl φ F -1 V 0 ˙ f : 1 F -1 V 0 ˙ 1-1 onto F -1 V 0 ˙ F -1 V 0 ˙
34 nnuz = 1
35 33 34 eleqtrdi φ F -1 V 0 ˙ f : 1 F -1 V 0 ˙ 1-1 onto F -1 V 0 ˙ F -1 V 0 ˙ 1
36 7 adantr φ F -1 V 0 ˙ f : 1 F -1 V 0 ˙ 1-1 onto F -1 V 0 ˙ F : A B
37 ffn F : A B F Fn A
38 dffn4 F Fn A F : A onto ran F
39 37 38 sylib F : A B F : A onto ran F
40 fof F : A onto ran F F : A ran F
41 36 39 40 3syl φ F -1 V 0 ˙ f : 1 F -1 V 0 ˙ 1-1 onto F -1 V 0 ˙ F : A ran F
42 5 adantr φ F -1 V 0 ˙ f : 1 F -1 V 0 ˙ 1-1 onto F -1 V 0 ˙ G Mnd
43 1 submacs G Mnd SubMnd G ACS B
44 acsmre SubMnd G ACS B SubMnd G Moore B
45 42 43 44 3syl φ F -1 V 0 ˙ f : 1 F -1 V 0 ˙ 1-1 onto F -1 V 0 ˙ SubMnd G Moore B
46 eqid mrCls SubMnd G = mrCls SubMnd G
47 36 frnd φ F -1 V 0 ˙ f : 1 F -1 V 0 ˙ 1-1 onto F -1 V 0 ˙ ran F B
48 45 46 47 mrcssidd φ F -1 V 0 ˙ f : 1 F -1 V 0 ˙ 1-1 onto F -1 V 0 ˙ ran F mrCls SubMnd G ran F
49 41 48 fssd φ F -1 V 0 ˙ f : 1 F -1 V 0 ˙ 1-1 onto F -1 V 0 ˙ F : A mrCls SubMnd G ran F
50 f1of1 f : 1 F -1 V 0 ˙ 1-1 onto F -1 V 0 ˙ f : 1 F -1 V 0 ˙ 1-1 F -1 V 0 ˙
51 50 ad2antll φ F -1 V 0 ˙ f : 1 F -1 V 0 ˙ 1-1 onto F -1 V 0 ˙ f : 1 F -1 V 0 ˙ 1-1 F -1 V 0 ˙
52 cnvimass F -1 V 0 ˙ dom F
53 52 36 fssdm φ F -1 V 0 ˙ f : 1 F -1 V 0 ˙ 1-1 onto F -1 V 0 ˙ F -1 V 0 ˙ A
54 f1ss f : 1 F -1 V 0 ˙ 1-1 F -1 V 0 ˙ F -1 V 0 ˙ A f : 1 F -1 V 0 ˙ 1-1 A
55 51 53 54 syl2anc φ F -1 V 0 ˙ f : 1 F -1 V 0 ˙ 1-1 onto F -1 V 0 ˙ f : 1 F -1 V 0 ˙ 1-1 A
56 f1f f : 1 F -1 V 0 ˙ 1-1 A f : 1 F -1 V 0 ˙ A
57 55 56 syl φ F -1 V 0 ˙ f : 1 F -1 V 0 ˙ 1-1 onto F -1 V 0 ˙ f : 1 F -1 V 0 ˙ A
58 fco F : A mrCls SubMnd G ran F f : 1 F -1 V 0 ˙ A F f : 1 F -1 V 0 ˙ mrCls SubMnd G ran F
59 49 57 58 syl2anc φ F -1 V 0 ˙ f : 1 F -1 V 0 ˙ 1-1 onto F -1 V 0 ˙ F f : 1 F -1 V 0 ˙ mrCls SubMnd G ran F
60 59 ffvelrnda φ F -1 V 0 ˙ f : 1 F -1 V 0 ˙ 1-1 onto F -1 V 0 ˙ x 1 F -1 V 0 ˙ F f x mrCls SubMnd G ran F
61 46 mrccl SubMnd G Moore B ran F B mrCls SubMnd G ran F SubMnd G
62 45 47 61 syl2anc φ F -1 V 0 ˙ f : 1 F -1 V 0 ˙ 1-1 onto F -1 V 0 ˙ mrCls SubMnd G ran F SubMnd G
63 4 oppgsubm SubMnd G = SubMnd O
64 62 63 eleqtrdi φ F -1 V 0 ˙ f : 1 F -1 V 0 ˙ 1-1 onto F -1 V 0 ˙ mrCls SubMnd G ran F SubMnd O
65 eqid + O = + O
66 65 submcl mrCls SubMnd G ran F SubMnd O x mrCls SubMnd G ran F y mrCls SubMnd G ran F x + O y mrCls SubMnd G ran F
67 66 3expb mrCls SubMnd G ran F SubMnd O x mrCls SubMnd G ran F y mrCls SubMnd G ran F x + O y mrCls SubMnd G ran F
68 64 67 sylan φ F -1 V 0 ˙ f : 1 F -1 V 0 ˙ 1-1 onto F -1 V 0 ˙ x mrCls SubMnd G ran F y mrCls SubMnd G ran F x + O y mrCls SubMnd G ran F
69 eqid + G = + G
70 69 4 65 oppgplus x + O y = y + G x
71 8 adantr φ F -1 V 0 ˙ f : 1 F -1 V 0 ˙ 1-1 onto F -1 V 0 ˙ ran F Z ran F
72 eqid G 𝑠 mrCls SubMnd G ran F = G 𝑠 mrCls SubMnd G ran F
73 3 46 72 cntzspan G Mnd ran F Z ran F G 𝑠 mrCls SubMnd G ran F CMnd
74 42 71 73 syl2anc φ F -1 V 0 ˙ f : 1 F -1 V 0 ˙ 1-1 onto F -1 V 0 ˙ G 𝑠 mrCls SubMnd G ran F CMnd
75 72 3 submcmn2 mrCls SubMnd G ran F SubMnd G G 𝑠 mrCls SubMnd G ran F CMnd mrCls SubMnd G ran F Z mrCls SubMnd G ran F
76 62 75 syl φ F -1 V 0 ˙ f : 1 F -1 V 0 ˙ 1-1 onto F -1 V 0 ˙ G 𝑠 mrCls SubMnd G ran F CMnd mrCls SubMnd G ran F Z mrCls SubMnd G ran F
77 74 76 mpbid φ F -1 V 0 ˙ f : 1 F -1 V 0 ˙ 1-1 onto F -1 V 0 ˙ mrCls SubMnd G ran F Z mrCls SubMnd G ran F
78 77 sselda φ F -1 V 0 ˙ f : 1 F -1 V 0 ˙ 1-1 onto F -1 V 0 ˙ x mrCls SubMnd G ran F x Z mrCls SubMnd G ran F
79 69 3 cntzi x Z mrCls SubMnd G ran F y mrCls SubMnd G ran F x + G y = y + G x
80 78 79 sylan φ F -1 V 0 ˙ f : 1 F -1 V 0 ˙ 1-1 onto F -1 V 0 ˙ x mrCls SubMnd G ran F y mrCls SubMnd G ran F x + G y = y + G x
81 70 80 eqtr4id φ F -1 V 0 ˙ f : 1 F -1 V 0 ˙ 1-1 onto F -1 V 0 ˙ x mrCls SubMnd G ran F y mrCls SubMnd G ran F x + O y = x + G y
82 81 anasss φ F -1 V 0 ˙ f : 1 F -1 V 0 ˙ 1-1 onto F -1 V 0 ˙ x mrCls SubMnd G ran F y mrCls SubMnd G ran F x + O y = x + G y
83 35 60 68 82 seqfeq4 φ F -1 V 0 ˙ f : 1 F -1 V 0 ˙ 1-1 onto F -1 V 0 ˙ seq 1 + O F f F -1 V 0 ˙ = seq 1 + G F f F -1 V 0 ˙
84 4 1 oppgbas B = Base O
85 eqid Cntz O = Cntz O
86 42 10 syl φ F -1 V 0 ˙ f : 1 F -1 V 0 ˙ 1-1 onto F -1 V 0 ˙ O Mnd
87 6 adantr φ F -1 V 0 ˙ f : 1 F -1 V 0 ˙ 1-1 onto F -1 V 0 ˙ A V
88 4 3 oppgcntz Z ran F = Cntz O ran F
89 71 88 sseqtrdi φ F -1 V 0 ˙ f : 1 F -1 V 0 ˙ 1-1 onto F -1 V 0 ˙ ran F Cntz O ran F
90 suppssdm F supp 0 ˙ dom F
91 25 90 eqsstrrdi φ F -1 V 0 ˙ dom F
92 7 91 fssdmd φ F -1 V 0 ˙ A
93 92 adantr φ F -1 V 0 ˙ f : 1 F -1 V 0 ˙ 1-1 onto F -1 V 0 ˙ F -1 V 0 ˙ A
94 51 93 54 syl2anc φ F -1 V 0 ˙ f : 1 F -1 V 0 ˙ 1-1 onto F -1 V 0 ˙ f : 1 F -1 V 0 ˙ 1-1 A
95 26 adantr φ F -1 V 0 ˙ f : 1 F -1 V 0 ˙ 1-1 onto F -1 V 0 ˙ F supp 0 ˙ F -1 V 0 ˙ F -1 V 0 ˙ F -1 V 0 ˙
96 21 95 mpbiri φ F -1 V 0 ˙ f : 1 F -1 V 0 ˙ 1-1 onto F -1 V 0 ˙ F supp 0 ˙ F -1 V 0 ˙
97 f1ofo f : 1 F -1 V 0 ˙ 1-1 onto F -1 V 0 ˙ f : 1 F -1 V 0 ˙ onto F -1 V 0 ˙
98 forn f : 1 F -1 V 0 ˙ onto F -1 V 0 ˙ ran f = F -1 V 0 ˙
99 97 98 syl f : 1 F -1 V 0 ˙ 1-1 onto F -1 V 0 ˙ ran f = F -1 V 0 ˙
100 99 sseq2d f : 1 F -1 V 0 ˙ 1-1 onto F -1 V 0 ˙ F supp 0 ˙ ran f F supp 0 ˙ F -1 V 0 ˙
101 100 ad2antll φ F -1 V 0 ˙ f : 1 F -1 V 0 ˙ 1-1 onto F -1 V 0 ˙ F supp 0 ˙ ran f F supp 0 ˙ F -1 V 0 ˙
102 96 101 mpbird φ F -1 V 0 ˙ f : 1 F -1 V 0 ˙ 1-1 onto F -1 V 0 ˙ F supp 0 ˙ ran f
103 eqid F f supp 0 ˙ = F f supp 0 ˙
104 84 12 65 85 86 87 36 89 33 94 102 103 gsumval3 φ F -1 V 0 ˙ f : 1 F -1 V 0 ˙ 1-1 onto F -1 V 0 ˙ O F = seq 1 + O F f F -1 V 0 ˙
105 27 adantr φ F -1 V 0 ˙ f : 1 F -1 V 0 ˙ 1-1 onto F -1 V 0 ˙ F supp 0 ˙ F -1 V 0 ˙
106 105 101 mpbird φ F -1 V 0 ˙ f : 1 F -1 V 0 ˙ 1-1 onto F -1 V 0 ˙ F supp 0 ˙ ran f
107 1 2 69 3 42 87 36 71 33 94 106 103 gsumval3 φ F -1 V 0 ˙ f : 1 F -1 V 0 ˙ 1-1 onto F -1 V 0 ˙ G F = seq 1 + G F f F -1 V 0 ˙
108 83 104 107 3eqtr4d φ F -1 V 0 ˙ f : 1 F -1 V 0 ˙ 1-1 onto F -1 V 0 ˙ O F = G F
109 108 expr φ F -1 V 0 ˙ f : 1 F -1 V 0 ˙ 1-1 onto F -1 V 0 ˙ O F = G F
110 109 exlimdv φ F -1 V 0 ˙ f f : 1 F -1 V 0 ˙ 1-1 onto F -1 V 0 ˙ O F = G F
111 110 expimpd φ F -1 V 0 ˙ f f : 1 F -1 V 0 ˙ 1-1 onto F -1 V 0 ˙ O F = G F
112 9 fsuppimpd φ F supp 0 ˙ Fin
113 25 112 eqeltrrd φ F -1 V 0 ˙ Fin
114 fz1f1o F -1 V 0 ˙ Fin F -1 V 0 ˙ = F -1 V 0 ˙ f f : 1 F -1 V 0 ˙ 1-1 onto F -1 V 0 ˙
115 113 114 syl φ F -1 V 0 ˙ = F -1 V 0 ˙ f f : 1 F -1 V 0 ˙ 1-1 onto F -1 V 0 ˙
116 32 111 115 mpjaod φ O F = G F