Metamath Proof Explorer


Theorem fssdmd

Description: Expressing that a class is a subclass of the domain of a function expressed in maps-to notation, deduction form. (Contributed by AV, 21-Aug-2022)

Ref Expression
Hypotheses fssdmd.f φF:AB
fssdmd.d φDdomF
Assertion fssdmd φDA

Proof

Step Hyp Ref Expression
1 fssdmd.f φF:AB
2 fssdmd.d φDdomF
3 1 fdmd φdomF=A
4 2 3 sseqtrd φDA