Metamath Proof Explorer


Theorem gsumzinv

Description: Inverse of a group sum. (Contributed by Mario Carneiro, 25-Apr-2016) (Revised by AV, 6-Jun-2019)

Ref Expression
Hypotheses gsumzinv.b 𝐵 = ( Base ‘ 𝐺 )
gsumzinv.0 0 = ( 0g𝐺 )
gsumzinv.z 𝑍 = ( Cntz ‘ 𝐺 )
gsumzinv.i 𝐼 = ( invg𝐺 )
gsumzinv.g ( 𝜑𝐺 ∈ Grp )
gsumzinv.a ( 𝜑𝐴𝑉 )
gsumzinv.f ( 𝜑𝐹 : 𝐴𝐵 )
gsumzinv.c ( 𝜑 → ran 𝐹 ⊆ ( 𝑍 ‘ ran 𝐹 ) )
gsumzinv.n ( 𝜑𝐹 finSupp 0 )
Assertion gsumzinv ( 𝜑 → ( 𝐺 Σg ( 𝐼𝐹 ) ) = ( 𝐼 ‘ ( 𝐺 Σg 𝐹 ) ) )

Proof

Step Hyp Ref Expression
1 gsumzinv.b 𝐵 = ( Base ‘ 𝐺 )
2 gsumzinv.0 0 = ( 0g𝐺 )
3 gsumzinv.z 𝑍 = ( Cntz ‘ 𝐺 )
4 gsumzinv.i 𝐼 = ( invg𝐺 )
5 gsumzinv.g ( 𝜑𝐺 ∈ Grp )
6 gsumzinv.a ( 𝜑𝐴𝑉 )
7 gsumzinv.f ( 𝜑𝐹 : 𝐴𝐵 )
8 gsumzinv.c ( 𝜑 → ran 𝐹 ⊆ ( 𝑍 ‘ ran 𝐹 ) )
9 gsumzinv.n ( 𝜑𝐹 finSupp 0 )
10 eqid ( oppg𝐺 ) = ( oppg𝐺 )
11 5 grpmndd ( 𝜑𝐺 ∈ Mnd )
12 1 4 grpinvf ( 𝐺 ∈ Grp → 𝐼 : 𝐵𝐵 )
13 5 12 syl ( 𝜑𝐼 : 𝐵𝐵 )
14 fco ( ( 𝐼 : 𝐵𝐵𝐹 : 𝐴𝐵 ) → ( 𝐼𝐹 ) : 𝐴𝐵 )
15 13 7 14 syl2anc ( 𝜑 → ( 𝐼𝐹 ) : 𝐴𝐵 )
16 10 4 invoppggim ( 𝐺 ∈ Grp → 𝐼 ∈ ( 𝐺 GrpIso ( oppg𝐺 ) ) )
17 gimghm ( 𝐼 ∈ ( 𝐺 GrpIso ( oppg𝐺 ) ) → 𝐼 ∈ ( 𝐺 GrpHom ( oppg𝐺 ) ) )
18 ghmmhm ( 𝐼 ∈ ( 𝐺 GrpHom ( oppg𝐺 ) ) → 𝐼 ∈ ( 𝐺 MndHom ( oppg𝐺 ) ) )
19 5 16 17 18 4syl ( 𝜑𝐼 ∈ ( 𝐺 MndHom ( oppg𝐺 ) ) )
20 eqid ( Cntz ‘ ( oppg𝐺 ) ) = ( Cntz ‘ ( oppg𝐺 ) )
21 3 20 cntzmhm2 ( ( 𝐼 ∈ ( 𝐺 MndHom ( oppg𝐺 ) ) ∧ ran 𝐹 ⊆ ( 𝑍 ‘ ran 𝐹 ) ) → ( 𝐼 “ ran 𝐹 ) ⊆ ( ( Cntz ‘ ( oppg𝐺 ) ) ‘ ( 𝐼 “ ran 𝐹 ) ) )
22 19 8 21 syl2anc ( 𝜑 → ( 𝐼 “ ran 𝐹 ) ⊆ ( ( Cntz ‘ ( oppg𝐺 ) ) ‘ ( 𝐼 “ ran 𝐹 ) ) )
23 rnco2 ran ( 𝐼𝐹 ) = ( 𝐼 “ ran 𝐹 )
24 23 fveq2i ( 𝑍 ‘ ran ( 𝐼𝐹 ) ) = ( 𝑍 ‘ ( 𝐼 “ ran 𝐹 ) )
25 10 3 oppgcntz ( 𝑍 ‘ ( 𝐼 “ ran 𝐹 ) ) = ( ( Cntz ‘ ( oppg𝐺 ) ) ‘ ( 𝐼 “ ran 𝐹 ) )
26 24 25 eqtri ( 𝑍 ‘ ran ( 𝐼𝐹 ) ) = ( ( Cntz ‘ ( oppg𝐺 ) ) ‘ ( 𝐼 “ ran 𝐹 ) )
27 22 23 26 3sstr4g ( 𝜑 → ran ( 𝐼𝐹 ) ⊆ ( 𝑍 ‘ ran ( 𝐼𝐹 ) ) )
28 2 fvexi 0 ∈ V
29 28 a1i ( 𝜑0 ∈ V )
30 1 fvexi 𝐵 ∈ V
31 30 a1i ( 𝜑𝐵 ∈ V )
32 2 4 grpinvid ( 𝐺 ∈ Grp → ( 𝐼0 ) = 0 )
33 5 32 syl ( 𝜑 → ( 𝐼0 ) = 0 )
34 29 7 13 6 31 9 33 fsuppco2 ( 𝜑 → ( 𝐼𝐹 ) finSupp 0 )
35 1 2 3 10 11 6 15 27 34 gsumzoppg ( 𝜑 → ( ( oppg𝐺 ) Σg ( 𝐼𝐹 ) ) = ( 𝐺 Σg ( 𝐼𝐹 ) ) )
36 10 oppgmnd ( 𝐺 ∈ Mnd → ( oppg𝐺 ) ∈ Mnd )
37 11 36 syl ( 𝜑 → ( oppg𝐺 ) ∈ Mnd )
38 1 3 11 37 6 19 7 8 2 9 gsumzmhm ( 𝜑 → ( ( oppg𝐺 ) Σg ( 𝐼𝐹 ) ) = ( 𝐼 ‘ ( 𝐺 Σg 𝐹 ) ) )
39 35 38 eqtr3d ( 𝜑 → ( 𝐺 Σg ( 𝐼𝐹 ) ) = ( 𝐼 ‘ ( 𝐺 Σg 𝐹 ) ) )