| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gsumzmhm.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
| 2 |
|
gsumzmhm.z |
⊢ 𝑍 = ( Cntz ‘ 𝐺 ) |
| 3 |
|
gsumzmhm.g |
⊢ ( 𝜑 → 𝐺 ∈ Mnd ) |
| 4 |
|
gsumzmhm.h |
⊢ ( 𝜑 → 𝐻 ∈ Mnd ) |
| 5 |
|
gsumzmhm.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
| 6 |
|
gsumzmhm.k |
⊢ ( 𝜑 → 𝐾 ∈ ( 𝐺 MndHom 𝐻 ) ) |
| 7 |
|
gsumzmhm.f |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 8 |
|
gsumzmhm.c |
⊢ ( 𝜑 → ran 𝐹 ⊆ ( 𝑍 ‘ ran 𝐹 ) ) |
| 9 |
|
gsumzmhm.0 |
⊢ 0 = ( 0g ‘ 𝐺 ) |
| 10 |
|
gsumzmhm.w |
⊢ ( 𝜑 → 𝐹 finSupp 0 ) |
| 11 |
|
eqid |
⊢ ( 0g ‘ 𝐻 ) = ( 0g ‘ 𝐻 ) |
| 12 |
11
|
gsumz |
⊢ ( ( 𝐻 ∈ Mnd ∧ 𝐴 ∈ 𝑉 ) → ( 𝐻 Σg ( 𝑘 ∈ 𝐴 ↦ ( 0g ‘ 𝐻 ) ) ) = ( 0g ‘ 𝐻 ) ) |
| 13 |
4 5 12
|
syl2anc |
⊢ ( 𝜑 → ( 𝐻 Σg ( 𝑘 ∈ 𝐴 ↦ ( 0g ‘ 𝐻 ) ) ) = ( 0g ‘ 𝐻 ) ) |
| 14 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) = ∅ ) → ( 𝐻 Σg ( 𝑘 ∈ 𝐴 ↦ ( 0g ‘ 𝐻 ) ) ) = ( 0g ‘ 𝐻 ) ) |
| 15 |
9 11
|
mhm0 |
⊢ ( 𝐾 ∈ ( 𝐺 MndHom 𝐻 ) → ( 𝐾 ‘ 0 ) = ( 0g ‘ 𝐻 ) ) |
| 16 |
6 15
|
syl |
⊢ ( 𝜑 → ( 𝐾 ‘ 0 ) = ( 0g ‘ 𝐻 ) ) |
| 17 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) = ∅ ) → ( 𝐾 ‘ 0 ) = ( 0g ‘ 𝐻 ) ) |
| 18 |
14 17
|
eqtr4d |
⊢ ( ( 𝜑 ∧ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) = ∅ ) → ( 𝐻 Σg ( 𝑘 ∈ 𝐴 ↦ ( 0g ‘ 𝐻 ) ) ) = ( 𝐾 ‘ 0 ) ) |
| 19 |
1 9
|
mndidcl |
⊢ ( 𝐺 ∈ Mnd → 0 ∈ 𝐵 ) |
| 20 |
3 19
|
syl |
⊢ ( 𝜑 → 0 ∈ 𝐵 ) |
| 21 |
20
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) = ∅ ) ∧ 𝑘 ∈ 𝐴 ) → 0 ∈ 𝐵 ) |
| 22 |
9
|
fvexi |
⊢ 0 ∈ V |
| 23 |
22
|
a1i |
⊢ ( 𝜑 → 0 ∈ V ) |
| 24 |
7 5
|
fexd |
⊢ ( 𝜑 → 𝐹 ∈ V ) |
| 25 |
|
suppimacnv |
⊢ ( ( 𝐹 ∈ V ∧ 0 ∈ V ) → ( 𝐹 supp 0 ) = ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) |
| 26 |
24 23 25
|
syl2anc |
⊢ ( 𝜑 → ( 𝐹 supp 0 ) = ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) |
| 27 |
|
ssid |
⊢ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ⊆ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) |
| 28 |
26 27
|
eqsstrdi |
⊢ ( 𝜑 → ( 𝐹 supp 0 ) ⊆ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) |
| 29 |
7 5 23 28
|
gsumcllem |
⊢ ( ( 𝜑 ∧ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) = ∅ ) → 𝐹 = ( 𝑘 ∈ 𝐴 ↦ 0 ) ) |
| 30 |
|
eqid |
⊢ ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 ) |
| 31 |
1 30
|
mhmf |
⊢ ( 𝐾 ∈ ( 𝐺 MndHom 𝐻 ) → 𝐾 : 𝐵 ⟶ ( Base ‘ 𝐻 ) ) |
| 32 |
6 31
|
syl |
⊢ ( 𝜑 → 𝐾 : 𝐵 ⟶ ( Base ‘ 𝐻 ) ) |
| 33 |
32
|
feqmptd |
⊢ ( 𝜑 → 𝐾 = ( 𝑥 ∈ 𝐵 ↦ ( 𝐾 ‘ 𝑥 ) ) ) |
| 34 |
33
|
adantr |
⊢ ( ( 𝜑 ∧ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) = ∅ ) → 𝐾 = ( 𝑥 ∈ 𝐵 ↦ ( 𝐾 ‘ 𝑥 ) ) ) |
| 35 |
|
fveq2 |
⊢ ( 𝑥 = 0 → ( 𝐾 ‘ 𝑥 ) = ( 𝐾 ‘ 0 ) ) |
| 36 |
21 29 34 35
|
fmptco |
⊢ ( ( 𝜑 ∧ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) = ∅ ) → ( 𝐾 ∘ 𝐹 ) = ( 𝑘 ∈ 𝐴 ↦ ( 𝐾 ‘ 0 ) ) ) |
| 37 |
16
|
mpteq2dv |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ ( 𝐾 ‘ 0 ) ) = ( 𝑘 ∈ 𝐴 ↦ ( 0g ‘ 𝐻 ) ) ) |
| 38 |
37
|
adantr |
⊢ ( ( 𝜑 ∧ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) = ∅ ) → ( 𝑘 ∈ 𝐴 ↦ ( 𝐾 ‘ 0 ) ) = ( 𝑘 ∈ 𝐴 ↦ ( 0g ‘ 𝐻 ) ) ) |
| 39 |
36 38
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) = ∅ ) → ( 𝐾 ∘ 𝐹 ) = ( 𝑘 ∈ 𝐴 ↦ ( 0g ‘ 𝐻 ) ) ) |
| 40 |
39
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) = ∅ ) → ( 𝐻 Σg ( 𝐾 ∘ 𝐹 ) ) = ( 𝐻 Σg ( 𝑘 ∈ 𝐴 ↦ ( 0g ‘ 𝐻 ) ) ) ) |
| 41 |
29
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) = ∅ ) → ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ 0 ) ) ) |
| 42 |
9
|
gsumz |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑉 ) → ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ 0 ) ) = 0 ) |
| 43 |
3 5 42
|
syl2anc |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ 0 ) ) = 0 ) |
| 44 |
43
|
adantr |
⊢ ( ( 𝜑 ∧ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) = ∅ ) → ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ 0 ) ) = 0 ) |
| 45 |
41 44
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) = ∅ ) → ( 𝐺 Σg 𝐹 ) = 0 ) |
| 46 |
45
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) = ∅ ) → ( 𝐾 ‘ ( 𝐺 Σg 𝐹 ) ) = ( 𝐾 ‘ 0 ) ) |
| 47 |
18 40 46
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) = ∅ ) → ( 𝐻 Σg ( 𝐾 ∘ 𝐹 ) ) = ( 𝐾 ‘ ( 𝐺 Σg 𝐹 ) ) ) |
| 48 |
47
|
ex |
⊢ ( 𝜑 → ( ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) = ∅ → ( 𝐻 Σg ( 𝐾 ∘ 𝐹 ) ) = ( 𝐾 ‘ ( 𝐺 Σg 𝐹 ) ) ) ) |
| 49 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) → 𝐺 ∈ Mnd ) |
| 50 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
| 51 |
1 50
|
mndcl |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝐵 ) |
| 52 |
51
|
3expb |
⊢ ( ( 𝐺 ∈ Mnd ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝐵 ) |
| 53 |
49 52
|
sylan |
⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝐵 ) |
| 54 |
|
f1of1 |
⊢ ( 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) → 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) |
| 55 |
54
|
ad2antll |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) → 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) |
| 56 |
|
cnvimass |
⊢ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ⊆ dom 𝐹 |
| 57 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) → 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 58 |
56 57
|
fssdm |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) → ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ⊆ 𝐴 ) |
| 59 |
|
f1ss |
⊢ ( ( 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ∧ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ⊆ 𝐴 ) → 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1→ 𝐴 ) |
| 60 |
55 58 59
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) → 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1→ 𝐴 ) |
| 61 |
|
f1f |
⊢ ( 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1→ 𝐴 → 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) ⟶ 𝐴 ) |
| 62 |
60 61
|
syl |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) → 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) ⟶ 𝐴 ) |
| 63 |
|
fco |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) ⟶ 𝐴 ) → ( 𝐹 ∘ 𝑓 ) : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) ⟶ 𝐵 ) |
| 64 |
7 62 63
|
syl2an2r |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) → ( 𝐹 ∘ 𝑓 ) : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) ⟶ 𝐵 ) |
| 65 |
64
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) ∧ 𝑥 ∈ ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) ) → ( ( 𝐹 ∘ 𝑓 ) ‘ 𝑥 ) ∈ 𝐵 ) |
| 66 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) → ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ) |
| 67 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
| 68 |
66 67
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) → ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ( ℤ≥ ‘ 1 ) ) |
| 69 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) → 𝐾 ∈ ( 𝐺 MndHom 𝐻 ) ) |
| 70 |
|
eqid |
⊢ ( +g ‘ 𝐻 ) = ( +g ‘ 𝐻 ) |
| 71 |
1 50 70
|
mhmlin |
⊢ ( ( 𝐾 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝐾 ‘ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) = ( ( 𝐾 ‘ 𝑥 ) ( +g ‘ 𝐻 ) ( 𝐾 ‘ 𝑦 ) ) ) |
| 72 |
71
|
3expb |
⊢ ( ( 𝐾 ∈ ( 𝐺 MndHom 𝐻 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐾 ‘ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) = ( ( 𝐾 ‘ 𝑥 ) ( +g ‘ 𝐻 ) ( 𝐾 ‘ 𝑦 ) ) ) |
| 73 |
69 72
|
sylan |
⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐾 ‘ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) = ( ( 𝐾 ‘ 𝑥 ) ( +g ‘ 𝐻 ) ( 𝐾 ‘ 𝑦 ) ) ) |
| 74 |
|
coass |
⊢ ( ( 𝐾 ∘ 𝐹 ) ∘ 𝑓 ) = ( 𝐾 ∘ ( 𝐹 ∘ 𝑓 ) ) |
| 75 |
74
|
fveq1i |
⊢ ( ( ( 𝐾 ∘ 𝐹 ) ∘ 𝑓 ) ‘ 𝑥 ) = ( ( 𝐾 ∘ ( 𝐹 ∘ 𝑓 ) ) ‘ 𝑥 ) |
| 76 |
|
fvco3 |
⊢ ( ( ( 𝐹 ∘ 𝑓 ) : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) ⟶ 𝐵 ∧ 𝑥 ∈ ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) ) → ( ( 𝐾 ∘ ( 𝐹 ∘ 𝑓 ) ) ‘ 𝑥 ) = ( 𝐾 ‘ ( ( 𝐹 ∘ 𝑓 ) ‘ 𝑥 ) ) ) |
| 77 |
64 76
|
sylan |
⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) ∧ 𝑥 ∈ ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) ) → ( ( 𝐾 ∘ ( 𝐹 ∘ 𝑓 ) ) ‘ 𝑥 ) = ( 𝐾 ‘ ( ( 𝐹 ∘ 𝑓 ) ‘ 𝑥 ) ) ) |
| 78 |
75 77
|
eqtr2id |
⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) ∧ 𝑥 ∈ ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) ) → ( 𝐾 ‘ ( ( 𝐹 ∘ 𝑓 ) ‘ 𝑥 ) ) = ( ( ( 𝐾 ∘ 𝐹 ) ∘ 𝑓 ) ‘ 𝑥 ) ) |
| 79 |
53 65 68 73 78
|
seqhomo |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) → ( 𝐾 ‘ ( seq 1 ( ( +g ‘ 𝐺 ) , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) ) = ( seq 1 ( ( +g ‘ 𝐻 ) , ( ( 𝐾 ∘ 𝐹 ) ∘ 𝑓 ) ) ‘ ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) ) |
| 80 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) → 𝐴 ∈ 𝑉 ) |
| 81 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) → ran 𝐹 ⊆ ( 𝑍 ‘ ran 𝐹 ) ) |
| 82 |
28
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) → ( 𝐹 supp 0 ) ⊆ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) |
| 83 |
|
f1ofo |
⊢ ( 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) → 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) |
| 84 |
|
forn |
⊢ ( 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) → ran 𝑓 = ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) |
| 85 |
83 84
|
syl |
⊢ ( 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) → ran 𝑓 = ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) |
| 86 |
85
|
ad2antll |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) → ran 𝑓 = ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) |
| 87 |
82 86
|
sseqtrrd |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) → ( 𝐹 supp 0 ) ⊆ ran 𝑓 ) |
| 88 |
|
eqid |
⊢ ( ( 𝐹 ∘ 𝑓 ) supp 0 ) = ( ( 𝐹 ∘ 𝑓 ) supp 0 ) |
| 89 |
1 9 50 2 49 80 57 81 66 60 87 88
|
gsumval3 |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) → ( 𝐺 Σg 𝐹 ) = ( seq 1 ( ( +g ‘ 𝐺 ) , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) ) |
| 90 |
89
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) → ( 𝐾 ‘ ( 𝐺 Σg 𝐹 ) ) = ( 𝐾 ‘ ( seq 1 ( ( +g ‘ 𝐺 ) , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) ) ) |
| 91 |
|
eqid |
⊢ ( Cntz ‘ 𝐻 ) = ( Cntz ‘ 𝐻 ) |
| 92 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) → 𝐻 ∈ Mnd ) |
| 93 |
|
fco |
⊢ ( ( 𝐾 : 𝐵 ⟶ ( Base ‘ 𝐻 ) ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( 𝐾 ∘ 𝐹 ) : 𝐴 ⟶ ( Base ‘ 𝐻 ) ) |
| 94 |
32 57 93
|
syl2an2r |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) → ( 𝐾 ∘ 𝐹 ) : 𝐴 ⟶ ( Base ‘ 𝐻 ) ) |
| 95 |
2 91
|
cntzmhm2 |
⊢ ( ( 𝐾 ∈ ( 𝐺 MndHom 𝐻 ) ∧ ran 𝐹 ⊆ ( 𝑍 ‘ ran 𝐹 ) ) → ( 𝐾 “ ran 𝐹 ) ⊆ ( ( Cntz ‘ 𝐻 ) ‘ ( 𝐾 “ ran 𝐹 ) ) ) |
| 96 |
6 81 95
|
syl2an2r |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) → ( 𝐾 “ ran 𝐹 ) ⊆ ( ( Cntz ‘ 𝐻 ) ‘ ( 𝐾 “ ran 𝐹 ) ) ) |
| 97 |
|
rnco2 |
⊢ ran ( 𝐾 ∘ 𝐹 ) = ( 𝐾 “ ran 𝐹 ) |
| 98 |
97
|
fveq2i |
⊢ ( ( Cntz ‘ 𝐻 ) ‘ ran ( 𝐾 ∘ 𝐹 ) ) = ( ( Cntz ‘ 𝐻 ) ‘ ( 𝐾 “ ran 𝐹 ) ) |
| 99 |
96 97 98
|
3sstr4g |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) → ran ( 𝐾 ∘ 𝐹 ) ⊆ ( ( Cntz ‘ 𝐻 ) ‘ ran ( 𝐾 ∘ 𝐹 ) ) ) |
| 100 |
|
eldifi |
⊢ ( 𝑥 ∈ ( 𝐴 ∖ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) → 𝑥 ∈ 𝐴 ) |
| 101 |
|
fvco3 |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐾 ∘ 𝐹 ) ‘ 𝑥 ) = ( 𝐾 ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
| 102 |
57 100 101
|
syl2an |
⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) → ( ( 𝐾 ∘ 𝐹 ) ‘ 𝑥 ) = ( 𝐾 ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
| 103 |
22
|
a1i |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) → 0 ∈ V ) |
| 104 |
57 82 80 103
|
suppssr |
⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) → ( 𝐹 ‘ 𝑥 ) = 0 ) |
| 105 |
104
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) → ( 𝐾 ‘ ( 𝐹 ‘ 𝑥 ) ) = ( 𝐾 ‘ 0 ) ) |
| 106 |
16
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) → ( 𝐾 ‘ 0 ) = ( 0g ‘ 𝐻 ) ) |
| 107 |
102 105 106
|
3eqtrd |
⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) → ( ( 𝐾 ∘ 𝐹 ) ‘ 𝑥 ) = ( 0g ‘ 𝐻 ) ) |
| 108 |
94 107
|
suppss |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) → ( ( 𝐾 ∘ 𝐹 ) supp ( 0g ‘ 𝐻 ) ) ⊆ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) |
| 109 |
108 86
|
sseqtrrd |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) → ( ( 𝐾 ∘ 𝐹 ) supp ( 0g ‘ 𝐻 ) ) ⊆ ran 𝑓 ) |
| 110 |
|
eqid |
⊢ ( ( ( 𝐾 ∘ 𝐹 ) ∘ 𝑓 ) supp ( 0g ‘ 𝐻 ) ) = ( ( ( 𝐾 ∘ 𝐹 ) ∘ 𝑓 ) supp ( 0g ‘ 𝐻 ) ) |
| 111 |
30 11 70 91 92 80 94 99 66 60 109 110
|
gsumval3 |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) → ( 𝐻 Σg ( 𝐾 ∘ 𝐹 ) ) = ( seq 1 ( ( +g ‘ 𝐻 ) , ( ( 𝐾 ∘ 𝐹 ) ∘ 𝑓 ) ) ‘ ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) ) |
| 112 |
79 90 111
|
3eqtr4rd |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) → ( 𝐻 Σg ( 𝐾 ∘ 𝐹 ) ) = ( 𝐾 ‘ ( 𝐺 Σg 𝐹 ) ) ) |
| 113 |
112
|
expr |
⊢ ( ( 𝜑 ∧ ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ) → ( 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) → ( 𝐻 Σg ( 𝐾 ∘ 𝐹 ) ) = ( 𝐾 ‘ ( 𝐺 Σg 𝐹 ) ) ) ) |
| 114 |
113
|
exlimdv |
⊢ ( ( 𝜑 ∧ ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ) → ( ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) → ( 𝐻 Σg ( 𝐾 ∘ 𝐹 ) ) = ( 𝐾 ‘ ( 𝐺 Σg 𝐹 ) ) ) ) |
| 115 |
114
|
expimpd |
⊢ ( 𝜑 → ( ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) → ( 𝐻 Σg ( 𝐾 ∘ 𝐹 ) ) = ( 𝐾 ‘ ( 𝐺 Σg 𝐹 ) ) ) ) |
| 116 |
10
|
fsuppimpd |
⊢ ( 𝜑 → ( 𝐹 supp 0 ) ∈ Fin ) |
| 117 |
26 116
|
eqeltrrd |
⊢ ( 𝜑 → ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ∈ Fin ) |
| 118 |
|
fz1f1o |
⊢ ( ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ∈ Fin → ( ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) = ∅ ∨ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) ) |
| 119 |
117 118
|
syl |
⊢ ( 𝜑 → ( ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) = ∅ ∨ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) ) |
| 120 |
48 115 119
|
mpjaod |
⊢ ( 𝜑 → ( 𝐻 Σg ( 𝐾 ∘ 𝐹 ) ) = ( 𝐾 ‘ ( 𝐺 Σg 𝐹 ) ) ) |