Metamath Proof Explorer


Theorem gsumzmhm

Description: Apply a group homomorphism to a group sum. (Contributed by Mario Carneiro, 24-Apr-2016) (Revised by AV, 6-Jun-2019)

Ref Expression
Hypotheses gsumzmhm.b 𝐵 = ( Base ‘ 𝐺 )
gsumzmhm.z 𝑍 = ( Cntz ‘ 𝐺 )
gsumzmhm.g ( 𝜑𝐺 ∈ Mnd )
gsumzmhm.h ( 𝜑𝐻 ∈ Mnd )
gsumzmhm.a ( 𝜑𝐴𝑉 )
gsumzmhm.k ( 𝜑𝐾 ∈ ( 𝐺 MndHom 𝐻 ) )
gsumzmhm.f ( 𝜑𝐹 : 𝐴𝐵 )
gsumzmhm.c ( 𝜑 → ran 𝐹 ⊆ ( 𝑍 ‘ ran 𝐹 ) )
gsumzmhm.0 0 = ( 0g𝐺 )
gsumzmhm.w ( 𝜑𝐹 finSupp 0 )
Assertion gsumzmhm ( 𝜑 → ( 𝐻 Σg ( 𝐾𝐹 ) ) = ( 𝐾 ‘ ( 𝐺 Σg 𝐹 ) ) )

Proof

Step Hyp Ref Expression
1 gsumzmhm.b 𝐵 = ( Base ‘ 𝐺 )
2 gsumzmhm.z 𝑍 = ( Cntz ‘ 𝐺 )
3 gsumzmhm.g ( 𝜑𝐺 ∈ Mnd )
4 gsumzmhm.h ( 𝜑𝐻 ∈ Mnd )
5 gsumzmhm.a ( 𝜑𝐴𝑉 )
6 gsumzmhm.k ( 𝜑𝐾 ∈ ( 𝐺 MndHom 𝐻 ) )
7 gsumzmhm.f ( 𝜑𝐹 : 𝐴𝐵 )
8 gsumzmhm.c ( 𝜑 → ran 𝐹 ⊆ ( 𝑍 ‘ ran 𝐹 ) )
9 gsumzmhm.0 0 = ( 0g𝐺 )
10 gsumzmhm.w ( 𝜑𝐹 finSupp 0 )
11 eqid ( 0g𝐻 ) = ( 0g𝐻 )
12 11 gsumz ( ( 𝐻 ∈ Mnd ∧ 𝐴𝑉 ) → ( 𝐻 Σg ( 𝑘𝐴 ↦ ( 0g𝐻 ) ) ) = ( 0g𝐻 ) )
13 4 5 12 syl2anc ( 𝜑 → ( 𝐻 Σg ( 𝑘𝐴 ↦ ( 0g𝐻 ) ) ) = ( 0g𝐻 ) )
14 13 adantr ( ( 𝜑 ∧ ( 𝐹 “ ( V ∖ { 0 } ) ) = ∅ ) → ( 𝐻 Σg ( 𝑘𝐴 ↦ ( 0g𝐻 ) ) ) = ( 0g𝐻 ) )
15 9 11 mhm0 ( 𝐾 ∈ ( 𝐺 MndHom 𝐻 ) → ( 𝐾0 ) = ( 0g𝐻 ) )
16 6 15 syl ( 𝜑 → ( 𝐾0 ) = ( 0g𝐻 ) )
17 16 adantr ( ( 𝜑 ∧ ( 𝐹 “ ( V ∖ { 0 } ) ) = ∅ ) → ( 𝐾0 ) = ( 0g𝐻 ) )
18 14 17 eqtr4d ( ( 𝜑 ∧ ( 𝐹 “ ( V ∖ { 0 } ) ) = ∅ ) → ( 𝐻 Σg ( 𝑘𝐴 ↦ ( 0g𝐻 ) ) ) = ( 𝐾0 ) )
19 1 9 mndidcl ( 𝐺 ∈ Mnd → 0𝐵 )
20 3 19 syl ( 𝜑0𝐵 )
21 20 ad2antrr ( ( ( 𝜑 ∧ ( 𝐹 “ ( V ∖ { 0 } ) ) = ∅ ) ∧ 𝑘𝐴 ) → 0𝐵 )
22 9 fvexi 0 ∈ V
23 22 a1i ( 𝜑0 ∈ V )
24 fex ( ( 𝐹 : 𝐴𝐵𝐴𝑉 ) → 𝐹 ∈ V )
25 7 5 24 syl2anc ( 𝜑𝐹 ∈ V )
26 suppimacnv ( ( 𝐹 ∈ V ∧ 0 ∈ V ) → ( 𝐹 supp 0 ) = ( 𝐹 “ ( V ∖ { 0 } ) ) )
27 25 23 26 syl2anc ( 𝜑 → ( 𝐹 supp 0 ) = ( 𝐹 “ ( V ∖ { 0 } ) ) )
28 ssid ( 𝐹 “ ( V ∖ { 0 } ) ) ⊆ ( 𝐹 “ ( V ∖ { 0 } ) )
29 27 28 eqsstrdi ( 𝜑 → ( 𝐹 supp 0 ) ⊆ ( 𝐹 “ ( V ∖ { 0 } ) ) )
30 7 5 23 29 gsumcllem ( ( 𝜑 ∧ ( 𝐹 “ ( V ∖ { 0 } ) ) = ∅ ) → 𝐹 = ( 𝑘𝐴0 ) )
31 eqid ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 )
32 1 31 mhmf ( 𝐾 ∈ ( 𝐺 MndHom 𝐻 ) → 𝐾 : 𝐵 ⟶ ( Base ‘ 𝐻 ) )
33 6 32 syl ( 𝜑𝐾 : 𝐵 ⟶ ( Base ‘ 𝐻 ) )
34 33 feqmptd ( 𝜑𝐾 = ( 𝑥𝐵 ↦ ( 𝐾𝑥 ) ) )
35 34 adantr ( ( 𝜑 ∧ ( 𝐹 “ ( V ∖ { 0 } ) ) = ∅ ) → 𝐾 = ( 𝑥𝐵 ↦ ( 𝐾𝑥 ) ) )
36 fveq2 ( 𝑥 = 0 → ( 𝐾𝑥 ) = ( 𝐾0 ) )
37 21 30 35 36 fmptco ( ( 𝜑 ∧ ( 𝐹 “ ( V ∖ { 0 } ) ) = ∅ ) → ( 𝐾𝐹 ) = ( 𝑘𝐴 ↦ ( 𝐾0 ) ) )
38 16 mpteq2dv ( 𝜑 → ( 𝑘𝐴 ↦ ( 𝐾0 ) ) = ( 𝑘𝐴 ↦ ( 0g𝐻 ) ) )
39 38 adantr ( ( 𝜑 ∧ ( 𝐹 “ ( V ∖ { 0 } ) ) = ∅ ) → ( 𝑘𝐴 ↦ ( 𝐾0 ) ) = ( 𝑘𝐴 ↦ ( 0g𝐻 ) ) )
40 37 39 eqtrd ( ( 𝜑 ∧ ( 𝐹 “ ( V ∖ { 0 } ) ) = ∅ ) → ( 𝐾𝐹 ) = ( 𝑘𝐴 ↦ ( 0g𝐻 ) ) )
41 40 oveq2d ( ( 𝜑 ∧ ( 𝐹 “ ( V ∖ { 0 } ) ) = ∅ ) → ( 𝐻 Σg ( 𝐾𝐹 ) ) = ( 𝐻 Σg ( 𝑘𝐴 ↦ ( 0g𝐻 ) ) ) )
42 30 oveq2d ( ( 𝜑 ∧ ( 𝐹 “ ( V ∖ { 0 } ) ) = ∅ ) → ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg ( 𝑘𝐴0 ) ) )
43 9 gsumz ( ( 𝐺 ∈ Mnd ∧ 𝐴𝑉 ) → ( 𝐺 Σg ( 𝑘𝐴0 ) ) = 0 )
44 3 5 43 syl2anc ( 𝜑 → ( 𝐺 Σg ( 𝑘𝐴0 ) ) = 0 )
45 44 adantr ( ( 𝜑 ∧ ( 𝐹 “ ( V ∖ { 0 } ) ) = ∅ ) → ( 𝐺 Σg ( 𝑘𝐴0 ) ) = 0 )
46 42 45 eqtrd ( ( 𝜑 ∧ ( 𝐹 “ ( V ∖ { 0 } ) ) = ∅ ) → ( 𝐺 Σg 𝐹 ) = 0 )
47 46 fveq2d ( ( 𝜑 ∧ ( 𝐹 “ ( V ∖ { 0 } ) ) = ∅ ) → ( 𝐾 ‘ ( 𝐺 Σg 𝐹 ) ) = ( 𝐾0 ) )
48 18 41 47 3eqtr4d ( ( 𝜑 ∧ ( 𝐹 “ ( V ∖ { 0 } ) ) = ∅ ) → ( 𝐻 Σg ( 𝐾𝐹 ) ) = ( 𝐾 ‘ ( 𝐺 Σg 𝐹 ) ) )
49 48 ex ( 𝜑 → ( ( 𝐹 “ ( V ∖ { 0 } ) ) = ∅ → ( 𝐻 Σg ( 𝐾𝐹 ) ) = ( 𝐾 ‘ ( 𝐺 Σg 𝐹 ) ) ) )
50 3 adantr ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ) → 𝐺 ∈ Mnd )
51 eqid ( +g𝐺 ) = ( +g𝐺 )
52 1 51 mndcl ( ( 𝐺 ∈ Mnd ∧ 𝑥𝐵𝑦𝐵 ) → ( 𝑥 ( +g𝐺 ) 𝑦 ) ∈ 𝐵 )
53 52 3expb ( ( 𝐺 ∈ Mnd ∧ ( 𝑥𝐵𝑦𝐵 ) ) → ( 𝑥 ( +g𝐺 ) 𝑦 ) ∈ 𝐵 )
54 50 53 sylan ( ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ) ∧ ( 𝑥𝐵𝑦𝐵 ) ) → ( 𝑥 ( +g𝐺 ) 𝑦 ) ∈ 𝐵 )
55 f1of1 ( 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( 𝐹 “ ( V ∖ { 0 } ) ) → 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1→ ( 𝐹 “ ( V ∖ { 0 } ) ) )
56 55 ad2antll ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ) → 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1→ ( 𝐹 “ ( V ∖ { 0 } ) ) )
57 cnvimass ( 𝐹 “ ( V ∖ { 0 } ) ) ⊆ dom 𝐹
58 7 adantr ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ) → 𝐹 : 𝐴𝐵 )
59 57 58 fssdm ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ) → ( 𝐹 “ ( V ∖ { 0 } ) ) ⊆ 𝐴 )
60 f1ss ( ( 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1→ ( 𝐹 “ ( V ∖ { 0 } ) ) ∧ ( 𝐹 “ ( V ∖ { 0 } ) ) ⊆ 𝐴 ) → 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1𝐴 )
61 56 59 60 syl2anc ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ) → 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1𝐴 )
62 f1f ( 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1𝐴𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ) ⟶ 𝐴 )
63 61 62 syl ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ) → 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ) ⟶ 𝐴 )
64 fco ( ( 𝐹 : 𝐴𝐵𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ) ⟶ 𝐴 ) → ( 𝐹𝑓 ) : ( 1 ... ( ♯ ‘ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ) ⟶ 𝐵 )
65 7 63 64 syl2an2r ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ) → ( 𝐹𝑓 ) : ( 1 ... ( ♯ ‘ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ) ⟶ 𝐵 )
66 65 ffvelrnda ( ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ) ∧ 𝑥 ∈ ( 1 ... ( ♯ ‘ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ) ) → ( ( 𝐹𝑓 ) ‘ 𝑥 ) ∈ 𝐵 )
67 simprl ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ) → ( ♯ ‘ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ )
68 nnuz ℕ = ( ℤ ‘ 1 )
69 67 68 eleqtrdi ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ) → ( ♯ ‘ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ( ℤ ‘ 1 ) )
70 6 adantr ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ) → 𝐾 ∈ ( 𝐺 MndHom 𝐻 ) )
71 eqid ( +g𝐻 ) = ( +g𝐻 )
72 1 51 71 mhmlin ( ( 𝐾 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑥𝐵𝑦𝐵 ) → ( 𝐾 ‘ ( 𝑥 ( +g𝐺 ) 𝑦 ) ) = ( ( 𝐾𝑥 ) ( +g𝐻 ) ( 𝐾𝑦 ) ) )
73 72 3expb ( ( 𝐾 ∈ ( 𝐺 MndHom 𝐻 ) ∧ ( 𝑥𝐵𝑦𝐵 ) ) → ( 𝐾 ‘ ( 𝑥 ( +g𝐺 ) 𝑦 ) ) = ( ( 𝐾𝑥 ) ( +g𝐻 ) ( 𝐾𝑦 ) ) )
74 70 73 sylan ( ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ) ∧ ( 𝑥𝐵𝑦𝐵 ) ) → ( 𝐾 ‘ ( 𝑥 ( +g𝐺 ) 𝑦 ) ) = ( ( 𝐾𝑥 ) ( +g𝐻 ) ( 𝐾𝑦 ) ) )
75 coass ( ( 𝐾𝐹 ) ∘ 𝑓 ) = ( 𝐾 ∘ ( 𝐹𝑓 ) )
76 75 fveq1i ( ( ( 𝐾𝐹 ) ∘ 𝑓 ) ‘ 𝑥 ) = ( ( 𝐾 ∘ ( 𝐹𝑓 ) ) ‘ 𝑥 )
77 fvco3 ( ( ( 𝐹𝑓 ) : ( 1 ... ( ♯ ‘ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ) ⟶ 𝐵𝑥 ∈ ( 1 ... ( ♯ ‘ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ) ) → ( ( 𝐾 ∘ ( 𝐹𝑓 ) ) ‘ 𝑥 ) = ( 𝐾 ‘ ( ( 𝐹𝑓 ) ‘ 𝑥 ) ) )
78 65 77 sylan ( ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ) ∧ 𝑥 ∈ ( 1 ... ( ♯ ‘ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ) ) → ( ( 𝐾 ∘ ( 𝐹𝑓 ) ) ‘ 𝑥 ) = ( 𝐾 ‘ ( ( 𝐹𝑓 ) ‘ 𝑥 ) ) )
79 76 78 syl5req ( ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ) ∧ 𝑥 ∈ ( 1 ... ( ♯ ‘ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ) ) → ( 𝐾 ‘ ( ( 𝐹𝑓 ) ‘ 𝑥 ) ) = ( ( ( 𝐾𝐹 ) ∘ 𝑓 ) ‘ 𝑥 ) )
80 54 66 69 74 79 seqhomo ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ) → ( 𝐾 ‘ ( seq 1 ( ( +g𝐺 ) , ( 𝐹𝑓 ) ) ‘ ( ♯ ‘ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ) ) = ( seq 1 ( ( +g𝐻 ) , ( ( 𝐾𝐹 ) ∘ 𝑓 ) ) ‘ ( ♯ ‘ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ) )
81 5 adantr ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ) → 𝐴𝑉 )
82 8 adantr ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ) → ran 𝐹 ⊆ ( 𝑍 ‘ ran 𝐹 ) )
83 29 adantr ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ) → ( 𝐹 supp 0 ) ⊆ ( 𝐹 “ ( V ∖ { 0 } ) ) )
84 f1ofo ( 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( 𝐹 “ ( V ∖ { 0 } ) ) → 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ) –onto→ ( 𝐹 “ ( V ∖ { 0 } ) ) )
85 forn ( 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ) –onto→ ( 𝐹 “ ( V ∖ { 0 } ) ) → ran 𝑓 = ( 𝐹 “ ( V ∖ { 0 } ) ) )
86 84 85 syl ( 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( 𝐹 “ ( V ∖ { 0 } ) ) → ran 𝑓 = ( 𝐹 “ ( V ∖ { 0 } ) ) )
87 86 ad2antll ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ) → ran 𝑓 = ( 𝐹 “ ( V ∖ { 0 } ) ) )
88 83 87 sseqtrrd ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ) → ( 𝐹 supp 0 ) ⊆ ran 𝑓 )
89 eqid ( ( 𝐹𝑓 ) supp 0 ) = ( ( 𝐹𝑓 ) supp 0 )
90 1 9 51 2 50 81 58 82 67 61 88 89 gsumval3 ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ) → ( 𝐺 Σg 𝐹 ) = ( seq 1 ( ( +g𝐺 ) , ( 𝐹𝑓 ) ) ‘ ( ♯ ‘ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ) )
91 90 fveq2d ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ) → ( 𝐾 ‘ ( 𝐺 Σg 𝐹 ) ) = ( 𝐾 ‘ ( seq 1 ( ( +g𝐺 ) , ( 𝐹𝑓 ) ) ‘ ( ♯ ‘ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ) ) )
92 eqid ( Cntz ‘ 𝐻 ) = ( Cntz ‘ 𝐻 )
93 4 adantr ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ) → 𝐻 ∈ Mnd )
94 fco ( ( 𝐾 : 𝐵 ⟶ ( Base ‘ 𝐻 ) ∧ 𝐹 : 𝐴𝐵 ) → ( 𝐾𝐹 ) : 𝐴 ⟶ ( Base ‘ 𝐻 ) )
95 33 58 94 syl2an2r ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ) → ( 𝐾𝐹 ) : 𝐴 ⟶ ( Base ‘ 𝐻 ) )
96 2 92 cntzmhm2 ( ( 𝐾 ∈ ( 𝐺 MndHom 𝐻 ) ∧ ran 𝐹 ⊆ ( 𝑍 ‘ ran 𝐹 ) ) → ( 𝐾 “ ran 𝐹 ) ⊆ ( ( Cntz ‘ 𝐻 ) ‘ ( 𝐾 “ ran 𝐹 ) ) )
97 6 82 96 syl2an2r ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ) → ( 𝐾 “ ran 𝐹 ) ⊆ ( ( Cntz ‘ 𝐻 ) ‘ ( 𝐾 “ ran 𝐹 ) ) )
98 rnco2 ran ( 𝐾𝐹 ) = ( 𝐾 “ ran 𝐹 )
99 98 fveq2i ( ( Cntz ‘ 𝐻 ) ‘ ran ( 𝐾𝐹 ) ) = ( ( Cntz ‘ 𝐻 ) ‘ ( 𝐾 “ ran 𝐹 ) )
100 97 98 99 3sstr4g ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ) → ran ( 𝐾𝐹 ) ⊆ ( ( Cntz ‘ 𝐻 ) ‘ ran ( 𝐾𝐹 ) ) )
101 eldifi ( 𝑥 ∈ ( 𝐴 ∖ ( 𝐹 “ ( V ∖ { 0 } ) ) ) → 𝑥𝐴 )
102 fvco3 ( ( 𝐹 : 𝐴𝐵𝑥𝐴 ) → ( ( 𝐾𝐹 ) ‘ 𝑥 ) = ( 𝐾 ‘ ( 𝐹𝑥 ) ) )
103 58 101 102 syl2an ( ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ) → ( ( 𝐾𝐹 ) ‘ 𝑥 ) = ( 𝐾 ‘ ( 𝐹𝑥 ) ) )
104 22 a1i ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ) → 0 ∈ V )
105 58 83 81 104 suppssr ( ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ) → ( 𝐹𝑥 ) = 0 )
106 105 fveq2d ( ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ) → ( 𝐾 ‘ ( 𝐹𝑥 ) ) = ( 𝐾0 ) )
107 16 ad2antrr ( ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ) → ( 𝐾0 ) = ( 0g𝐻 ) )
108 103 106 107 3eqtrd ( ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ) → ( ( 𝐾𝐹 ) ‘ 𝑥 ) = ( 0g𝐻 ) )
109 95 108 suppss ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ) → ( ( 𝐾𝐹 ) supp ( 0g𝐻 ) ) ⊆ ( 𝐹 “ ( V ∖ { 0 } ) ) )
110 109 87 sseqtrrd ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ) → ( ( 𝐾𝐹 ) supp ( 0g𝐻 ) ) ⊆ ran 𝑓 )
111 eqid ( ( ( 𝐾𝐹 ) ∘ 𝑓 ) supp ( 0g𝐻 ) ) = ( ( ( 𝐾𝐹 ) ∘ 𝑓 ) supp ( 0g𝐻 ) )
112 31 11 71 92 93 81 95 100 67 61 110 111 gsumval3 ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ) → ( 𝐻 Σg ( 𝐾𝐹 ) ) = ( seq 1 ( ( +g𝐻 ) , ( ( 𝐾𝐹 ) ∘ 𝑓 ) ) ‘ ( ♯ ‘ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ) )
113 80 91 112 3eqtr4rd ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ) → ( 𝐻 Σg ( 𝐾𝐹 ) ) = ( 𝐾 ‘ ( 𝐺 Σg 𝐹 ) ) )
114 113 expr ( ( 𝜑 ∧ ( ♯ ‘ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ) → ( 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( 𝐹 “ ( V ∖ { 0 } ) ) → ( 𝐻 Σg ( 𝐾𝐹 ) ) = ( 𝐾 ‘ ( 𝐺 Σg 𝐹 ) ) ) )
115 114 exlimdv ( ( 𝜑 ∧ ( ♯ ‘ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ) → ( ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( 𝐹 “ ( V ∖ { 0 } ) ) → ( 𝐻 Σg ( 𝐾𝐹 ) ) = ( 𝐾 ‘ ( 𝐺 Σg 𝐹 ) ) ) )
116 115 expimpd ( 𝜑 → ( ( ( ♯ ‘ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( 𝐹 “ ( V ∖ { 0 } ) ) ) → ( 𝐻 Σg ( 𝐾𝐹 ) ) = ( 𝐾 ‘ ( 𝐺 Σg 𝐹 ) ) ) )
117 10 fsuppimpd ( 𝜑 → ( 𝐹 supp 0 ) ∈ Fin )
118 27 117 eqeltrrd ( 𝜑 → ( 𝐹 “ ( V ∖ { 0 } ) ) ∈ Fin )
119 fz1f1o ( ( 𝐹 “ ( V ∖ { 0 } ) ) ∈ Fin → ( ( 𝐹 “ ( V ∖ { 0 } ) ) = ∅ ∨ ( ( ♯ ‘ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ) )
120 118 119 syl ( 𝜑 → ( ( 𝐹 “ ( V ∖ { 0 } ) ) = ∅ ∨ ( ( ♯ ‘ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ) )
121 49 116 120 mpjaod ( 𝜑 → ( 𝐻 Σg ( 𝐾𝐹 ) ) = ( 𝐾 ‘ ( 𝐺 Σg 𝐹 ) ) )