Step |
Hyp |
Ref |
Expression |
1 |
|
gsumcllem.f |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
2 |
|
gsumcllem.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
3 |
|
gsumcllem.z |
⊢ ( 𝜑 → 𝑍 ∈ 𝑈 ) |
4 |
|
gsumcllem.s |
⊢ ( 𝜑 → ( 𝐹 supp 𝑍 ) ⊆ 𝑊 ) |
5 |
1
|
feqmptd |
⊢ ( 𝜑 → 𝐹 = ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) ) |
6 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑊 = ∅ ) → 𝐹 = ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) ) |
7 |
|
difeq2 |
⊢ ( 𝑊 = ∅ → ( 𝐴 ∖ 𝑊 ) = ( 𝐴 ∖ ∅ ) ) |
8 |
|
dif0 |
⊢ ( 𝐴 ∖ ∅ ) = 𝐴 |
9 |
7 8
|
eqtrdi |
⊢ ( 𝑊 = ∅ → ( 𝐴 ∖ 𝑊 ) = 𝐴 ) |
10 |
9
|
eleq2d |
⊢ ( 𝑊 = ∅ → ( 𝑘 ∈ ( 𝐴 ∖ 𝑊 ) ↔ 𝑘 ∈ 𝐴 ) ) |
11 |
10
|
biimpar |
⊢ ( ( 𝑊 = ∅ ∧ 𝑘 ∈ 𝐴 ) → 𝑘 ∈ ( 𝐴 ∖ 𝑊 ) ) |
12 |
1 4 2 3
|
suppssr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 ∖ 𝑊 ) ) → ( 𝐹 ‘ 𝑘 ) = 𝑍 ) |
13 |
11 12
|
sylan2 |
⊢ ( ( 𝜑 ∧ ( 𝑊 = ∅ ∧ 𝑘 ∈ 𝐴 ) ) → ( 𝐹 ‘ 𝑘 ) = 𝑍 ) |
14 |
13
|
anassrs |
⊢ ( ( ( 𝜑 ∧ 𝑊 = ∅ ) ∧ 𝑘 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑘 ) = 𝑍 ) |
15 |
14
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ 𝑊 = ∅ ) → ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) = ( 𝑘 ∈ 𝐴 ↦ 𝑍 ) ) |
16 |
6 15
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑊 = ∅ ) → 𝐹 = ( 𝑘 ∈ 𝐴 ↦ 𝑍 ) ) |