Metamath Proof Explorer


Theorem dpjlsm

Description: The two subgroups that appear in dpjval add to the full direct product. (Contributed by Mario Carneiro, 26-Apr-2016)

Ref Expression
Hypotheses dpjfval.1 φGdomDProdS
dpjfval.2 φdomS=I
dpjlem.3 φXI
dpjlsm.s ˙=LSSumG
Assertion dpjlsm φGDProdS=SX˙GDProdSIX

Proof

Step Hyp Ref Expression
1 dpjfval.1 φGdomDProdS
2 dpjfval.2 φdomS=I
3 dpjlem.3 φXI
4 dpjlsm.s ˙=LSSumG
5 1 2 dprdf2 φS:ISubGrpG
6 disjdif XIX=
7 6 a1i φXIX=
8 undif2 XIX=XI
9 3 snssd φXI
10 ssequn1 XIXI=I
11 9 10 sylib φXI=I
12 8 11 eqtr2id φI=XIX
13 5 7 12 4 1 dprdsplit φGDProdS=GDProdSX˙GDProdSIX
14 1 2 3 dpjlem φGDProdSX=SX
15 14 oveq1d φGDProdSX˙GDProdSIX=SX˙GDProdSIX
16 13 15 eqtrd φGDProdS=SX˙GDProdSIX