Metamath Proof Explorer


Theorem dpjfval

Description: Value of the direct product projection (defined in terms of binary projection). (Contributed by Mario Carneiro, 26-Apr-2016)

Ref Expression
Hypotheses dpjfval.1 φGdomDProdS
dpjfval.2 φdomS=I
dpjfval.p P=GdProjS
dpjfval.q Q=proj1G
Assertion dpjfval φP=iISiQGDProdSIi

Proof

Step Hyp Ref Expression
1 dpjfval.1 φGdomDProdS
2 dpjfval.2 φdomS=I
3 dpjfval.p P=GdProjS
4 dpjfval.q Q=proj1G
5 df-dpj dProj=gGrp,sdomDProdgidomssiproj1ggDProdsdomsi
6 5 a1i φdProj=gGrp,sdomDProdgidomssiproj1ggDProdsdomsi
7 simprr φg=Gs=Ss=S
8 7 dmeqd φg=Gs=Sdoms=domS
9 2 adantr φg=Gs=SdomS=I
10 8 9 eqtrd φg=Gs=Sdoms=I
11 simprl φg=Gs=Sg=G
12 11 fveq2d φg=Gs=Sproj1g=proj1G
13 12 4 eqtr4di φg=Gs=Sproj1g=Q
14 7 fveq1d φg=Gs=Ssi=Si
15 10 difeq1d φg=Gs=Sdomsi=Ii
16 7 15 reseq12d φg=Gs=Ssdomsi=SIi
17 11 16 oveq12d φg=Gs=SgDProdsdomsi=GDProdSIi
18 13 14 17 oveq123d φg=Gs=Ssiproj1ggDProdsdomsi=SiQGDProdSIi
19 10 18 mpteq12dv φg=Gs=Sidomssiproj1ggDProdsdomsi=iISiQGDProdSIi
20 simpr φg=Gg=G
21 20 sneqd φg=Gg=G
22 21 imaeq2d φg=GdomDProdg=domDProdG
23 dprdgrp GdomDProdSGGrp
24 1 23 syl φGGrp
25 reldmdprd ReldomDProd
26 elrelimasn ReldomDProdSdomDProdGGdomDProdS
27 25 26 ax-mp SdomDProdGGdomDProdS
28 1 27 sylibr φSdomDProdG
29 1 2 dprddomcld φIV
30 29 mptexd φiISiQGDProdSIiV
31 6 19 22 24 28 30 ovmpodx φGdProjS=iISiQGDProdSIi
32 3 31 eqtrid φP=iISiQGDProdSIi