Metamath Proof Explorer


Theorem dpjfval

Description: Value of the direct product projection (defined in terms of binary projection). (Contributed by Mario Carneiro, 26-Apr-2016)

Ref Expression
Hypotheses dpjfval.1 ( 𝜑𝐺 dom DProd 𝑆 )
dpjfval.2 ( 𝜑 → dom 𝑆 = 𝐼 )
dpjfval.p 𝑃 = ( 𝐺 dProj 𝑆 )
dpjfval.q 𝑄 = ( proj1𝐺 )
Assertion dpjfval ( 𝜑𝑃 = ( 𝑖𝐼 ↦ ( ( 𝑆𝑖 ) 𝑄 ( 𝐺 DProd ( 𝑆 ↾ ( 𝐼 ∖ { 𝑖 } ) ) ) ) ) )

Proof

Step Hyp Ref Expression
1 dpjfval.1 ( 𝜑𝐺 dom DProd 𝑆 )
2 dpjfval.2 ( 𝜑 → dom 𝑆 = 𝐼 )
3 dpjfval.p 𝑃 = ( 𝐺 dProj 𝑆 )
4 dpjfval.q 𝑄 = ( proj1𝐺 )
5 df-dpj dProj = ( 𝑔 ∈ Grp , 𝑠 ∈ ( dom DProd “ { 𝑔 } ) ↦ ( 𝑖 ∈ dom 𝑠 ↦ ( ( 𝑠𝑖 ) ( proj1𝑔 ) ( 𝑔 DProd ( 𝑠 ↾ ( dom 𝑠 ∖ { 𝑖 } ) ) ) ) ) )
6 5 a1i ( 𝜑 → dProj = ( 𝑔 ∈ Grp , 𝑠 ∈ ( dom DProd “ { 𝑔 } ) ↦ ( 𝑖 ∈ dom 𝑠 ↦ ( ( 𝑠𝑖 ) ( proj1𝑔 ) ( 𝑔 DProd ( 𝑠 ↾ ( dom 𝑠 ∖ { 𝑖 } ) ) ) ) ) ) )
7 simprr ( ( 𝜑 ∧ ( 𝑔 = 𝐺𝑠 = 𝑆 ) ) → 𝑠 = 𝑆 )
8 7 dmeqd ( ( 𝜑 ∧ ( 𝑔 = 𝐺𝑠 = 𝑆 ) ) → dom 𝑠 = dom 𝑆 )
9 2 adantr ( ( 𝜑 ∧ ( 𝑔 = 𝐺𝑠 = 𝑆 ) ) → dom 𝑆 = 𝐼 )
10 8 9 eqtrd ( ( 𝜑 ∧ ( 𝑔 = 𝐺𝑠 = 𝑆 ) ) → dom 𝑠 = 𝐼 )
11 simprl ( ( 𝜑 ∧ ( 𝑔 = 𝐺𝑠 = 𝑆 ) ) → 𝑔 = 𝐺 )
12 11 fveq2d ( ( 𝜑 ∧ ( 𝑔 = 𝐺𝑠 = 𝑆 ) ) → ( proj1𝑔 ) = ( proj1𝐺 ) )
13 12 4 eqtr4di ( ( 𝜑 ∧ ( 𝑔 = 𝐺𝑠 = 𝑆 ) ) → ( proj1𝑔 ) = 𝑄 )
14 7 fveq1d ( ( 𝜑 ∧ ( 𝑔 = 𝐺𝑠 = 𝑆 ) ) → ( 𝑠𝑖 ) = ( 𝑆𝑖 ) )
15 10 difeq1d ( ( 𝜑 ∧ ( 𝑔 = 𝐺𝑠 = 𝑆 ) ) → ( dom 𝑠 ∖ { 𝑖 } ) = ( 𝐼 ∖ { 𝑖 } ) )
16 7 15 reseq12d ( ( 𝜑 ∧ ( 𝑔 = 𝐺𝑠 = 𝑆 ) ) → ( 𝑠 ↾ ( dom 𝑠 ∖ { 𝑖 } ) ) = ( 𝑆 ↾ ( 𝐼 ∖ { 𝑖 } ) ) )
17 11 16 oveq12d ( ( 𝜑 ∧ ( 𝑔 = 𝐺𝑠 = 𝑆 ) ) → ( 𝑔 DProd ( 𝑠 ↾ ( dom 𝑠 ∖ { 𝑖 } ) ) ) = ( 𝐺 DProd ( 𝑆 ↾ ( 𝐼 ∖ { 𝑖 } ) ) ) )
18 13 14 17 oveq123d ( ( 𝜑 ∧ ( 𝑔 = 𝐺𝑠 = 𝑆 ) ) → ( ( 𝑠𝑖 ) ( proj1𝑔 ) ( 𝑔 DProd ( 𝑠 ↾ ( dom 𝑠 ∖ { 𝑖 } ) ) ) ) = ( ( 𝑆𝑖 ) 𝑄 ( 𝐺 DProd ( 𝑆 ↾ ( 𝐼 ∖ { 𝑖 } ) ) ) ) )
19 10 18 mpteq12dv ( ( 𝜑 ∧ ( 𝑔 = 𝐺𝑠 = 𝑆 ) ) → ( 𝑖 ∈ dom 𝑠 ↦ ( ( 𝑠𝑖 ) ( proj1𝑔 ) ( 𝑔 DProd ( 𝑠 ↾ ( dom 𝑠 ∖ { 𝑖 } ) ) ) ) ) = ( 𝑖𝐼 ↦ ( ( 𝑆𝑖 ) 𝑄 ( 𝐺 DProd ( 𝑆 ↾ ( 𝐼 ∖ { 𝑖 } ) ) ) ) ) )
20 simpr ( ( 𝜑𝑔 = 𝐺 ) → 𝑔 = 𝐺 )
21 20 sneqd ( ( 𝜑𝑔 = 𝐺 ) → { 𝑔 } = { 𝐺 } )
22 21 imaeq2d ( ( 𝜑𝑔 = 𝐺 ) → ( dom DProd “ { 𝑔 } ) = ( dom DProd “ { 𝐺 } ) )
23 dprdgrp ( 𝐺 dom DProd 𝑆𝐺 ∈ Grp )
24 1 23 syl ( 𝜑𝐺 ∈ Grp )
25 reldmdprd Rel dom DProd
26 elrelimasn ( Rel dom DProd → ( 𝑆 ∈ ( dom DProd “ { 𝐺 } ) ↔ 𝐺 dom DProd 𝑆 ) )
27 25 26 ax-mp ( 𝑆 ∈ ( dom DProd “ { 𝐺 } ) ↔ 𝐺 dom DProd 𝑆 )
28 1 27 sylibr ( 𝜑𝑆 ∈ ( dom DProd “ { 𝐺 } ) )
29 1 2 dprddomcld ( 𝜑𝐼 ∈ V )
30 29 mptexd ( 𝜑 → ( 𝑖𝐼 ↦ ( ( 𝑆𝑖 ) 𝑄 ( 𝐺 DProd ( 𝑆 ↾ ( 𝐼 ∖ { 𝑖 } ) ) ) ) ) ∈ V )
31 6 19 22 24 28 30 ovmpodx ( 𝜑 → ( 𝐺 dProj 𝑆 ) = ( 𝑖𝐼 ↦ ( ( 𝑆𝑖 ) 𝑄 ( 𝐺 DProd ( 𝑆 ↾ ( 𝐼 ∖ { 𝑖 } ) ) ) ) ) )
32 3 31 syl5eq ( 𝜑𝑃 = ( 𝑖𝐼 ↦ ( ( 𝑆𝑖 ) 𝑄 ( 𝐺 DProd ( 𝑆 ↾ ( 𝐼 ∖ { 𝑖 } ) ) ) ) ) )