| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dprdsplit.2 |
|
| 2 |
|
dprdsplit.i |
|
| 3 |
|
dprdsplit.u |
|
| 4 |
|
dprdsplit.s |
|
| 5 |
|
dprdsplit.1 |
|
| 6 |
1
|
fdmd |
|
| 7 |
|
ssun1 |
|
| 8 |
7 3
|
sseqtrrid |
|
| 9 |
5 6 8
|
dprdres |
|
| 10 |
9
|
simpld |
|
| 11 |
|
dprdsubg |
|
| 12 |
10 11
|
syl |
|
| 13 |
|
ssun2 |
|
| 14 |
13 3
|
sseqtrrid |
|
| 15 |
5 6 14
|
dprdres |
|
| 16 |
15
|
simpld |
|
| 17 |
|
dprdsubg |
|
| 18 |
16 17
|
syl |
|
| 19 |
|
eqid |
|
| 20 |
|
eqid |
|
| 21 |
1 2 3 19 20
|
dmdprdsplit |
|
| 22 |
5 21
|
mpbid |
|
| 23 |
22
|
simp2d |
|
| 24 |
4 19
|
lsmsubg |
|
| 25 |
12 18 23 24
|
syl3anc |
|
| 26 |
3
|
eleq2d |
|
| 27 |
|
elun |
|
| 28 |
26 27
|
bitrdi |
|
| 29 |
28
|
biimpa |
|
| 30 |
|
fvres |
|
| 31 |
30
|
adantl |
|
| 32 |
10
|
adantr |
|
| 33 |
1 8
|
fssresd |
|
| 34 |
33
|
fdmd |
|
| 35 |
34
|
adantr |
|
| 36 |
|
simpr |
|
| 37 |
32 35 36
|
dprdub |
|
| 38 |
31 37
|
eqsstrrd |
|
| 39 |
4
|
lsmub1 |
|
| 40 |
12 18 39
|
syl2anc |
|
| 41 |
40
|
adantr |
|
| 42 |
38 41
|
sstrd |
|
| 43 |
|
fvres |
|
| 44 |
43
|
adantl |
|
| 45 |
16
|
adantr |
|
| 46 |
1 14
|
fssresd |
|
| 47 |
46
|
fdmd |
|
| 48 |
47
|
adantr |
|
| 49 |
|
simpr |
|
| 50 |
45 48 49
|
dprdub |
|
| 51 |
44 50
|
eqsstrrd |
|
| 52 |
4
|
lsmub2 |
|
| 53 |
12 18 52
|
syl2anc |
|
| 54 |
53
|
adantr |
|
| 55 |
51 54
|
sstrd |
|
| 56 |
42 55
|
jaodan |
|
| 57 |
29 56
|
syldan |
|
| 58 |
5 6 25 57
|
dprdlub |
|
| 59 |
9
|
simprd |
|
| 60 |
15
|
simprd |
|
| 61 |
|
dprdsubg |
|
| 62 |
5 61
|
syl |
|
| 63 |
4
|
lsmlub |
|
| 64 |
12 18 62 63
|
syl3anc |
|
| 65 |
59 60 64
|
mpbi2and |
|
| 66 |
58 65
|
eqssd |
|