Step |
Hyp |
Ref |
Expression |
1 |
|
dprdsplit.2 |
⊢ ( 𝜑 → 𝑆 : 𝐼 ⟶ ( SubGrp ‘ 𝐺 ) ) |
2 |
|
dprdsplit.i |
⊢ ( 𝜑 → ( 𝐶 ∩ 𝐷 ) = ∅ ) |
3 |
|
dprdsplit.u |
⊢ ( 𝜑 → 𝐼 = ( 𝐶 ∪ 𝐷 ) ) |
4 |
|
dprdsplit.s |
⊢ ⊕ = ( LSSum ‘ 𝐺 ) |
5 |
|
dprdsplit.1 |
⊢ ( 𝜑 → 𝐺 dom DProd 𝑆 ) |
6 |
1
|
fdmd |
⊢ ( 𝜑 → dom 𝑆 = 𝐼 ) |
7 |
|
ssun1 |
⊢ 𝐶 ⊆ ( 𝐶 ∪ 𝐷 ) |
8 |
7 3
|
sseqtrrid |
⊢ ( 𝜑 → 𝐶 ⊆ 𝐼 ) |
9 |
5 6 8
|
dprdres |
⊢ ( 𝜑 → ( 𝐺 dom DProd ( 𝑆 ↾ 𝐶 ) ∧ ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ⊆ ( 𝐺 DProd 𝑆 ) ) ) |
10 |
9
|
simpld |
⊢ ( 𝜑 → 𝐺 dom DProd ( 𝑆 ↾ 𝐶 ) ) |
11 |
|
dprdsubg |
⊢ ( 𝐺 dom DProd ( 𝑆 ↾ 𝐶 ) → ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ∈ ( SubGrp ‘ 𝐺 ) ) |
12 |
10 11
|
syl |
⊢ ( 𝜑 → ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ∈ ( SubGrp ‘ 𝐺 ) ) |
13 |
|
ssun2 |
⊢ 𝐷 ⊆ ( 𝐶 ∪ 𝐷 ) |
14 |
13 3
|
sseqtrrid |
⊢ ( 𝜑 → 𝐷 ⊆ 𝐼 ) |
15 |
5 6 14
|
dprdres |
⊢ ( 𝜑 → ( 𝐺 dom DProd ( 𝑆 ↾ 𝐷 ) ∧ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ⊆ ( 𝐺 DProd 𝑆 ) ) ) |
16 |
15
|
simpld |
⊢ ( 𝜑 → 𝐺 dom DProd ( 𝑆 ↾ 𝐷 ) ) |
17 |
|
dprdsubg |
⊢ ( 𝐺 dom DProd ( 𝑆 ↾ 𝐷 ) → ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ∈ ( SubGrp ‘ 𝐺 ) ) |
18 |
16 17
|
syl |
⊢ ( 𝜑 → ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ∈ ( SubGrp ‘ 𝐺 ) ) |
19 |
|
eqid |
⊢ ( Cntz ‘ 𝐺 ) = ( Cntz ‘ 𝐺 ) |
20 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
21 |
1 2 3 19 20
|
dmdprdsplit |
⊢ ( 𝜑 → ( 𝐺 dom DProd 𝑆 ↔ ( ( 𝐺 dom DProd ( 𝑆 ↾ 𝐶 ) ∧ 𝐺 dom DProd ( 𝑆 ↾ 𝐷 ) ) ∧ ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ∧ ( ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ∩ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) = { ( 0g ‘ 𝐺 ) } ) ) ) |
22 |
5 21
|
mpbid |
⊢ ( 𝜑 → ( ( 𝐺 dom DProd ( 𝑆 ↾ 𝐶 ) ∧ 𝐺 dom DProd ( 𝑆 ↾ 𝐷 ) ) ∧ ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ∧ ( ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ∩ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) = { ( 0g ‘ 𝐺 ) } ) ) |
23 |
22
|
simp2d |
⊢ ( 𝜑 → ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ) |
24 |
4 19
|
lsmsubg |
⊢ ( ( ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ) → ( ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ⊕ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ∈ ( SubGrp ‘ 𝐺 ) ) |
25 |
12 18 23 24
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ⊕ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ∈ ( SubGrp ‘ 𝐺 ) ) |
26 |
3
|
eleq2d |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐼 ↔ 𝑥 ∈ ( 𝐶 ∪ 𝐷 ) ) ) |
27 |
|
elun |
⊢ ( 𝑥 ∈ ( 𝐶 ∪ 𝐷 ) ↔ ( 𝑥 ∈ 𝐶 ∨ 𝑥 ∈ 𝐷 ) ) |
28 |
26 27
|
bitrdi |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐼 ↔ ( 𝑥 ∈ 𝐶 ∨ 𝑥 ∈ 𝐷 ) ) ) |
29 |
28
|
biimpa |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝑥 ∈ 𝐶 ∨ 𝑥 ∈ 𝐷 ) ) |
30 |
|
fvres |
⊢ ( 𝑥 ∈ 𝐶 → ( ( 𝑆 ↾ 𝐶 ) ‘ 𝑥 ) = ( 𝑆 ‘ 𝑥 ) ) |
31 |
30
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( ( 𝑆 ↾ 𝐶 ) ‘ 𝑥 ) = ( 𝑆 ‘ 𝑥 ) ) |
32 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → 𝐺 dom DProd ( 𝑆 ↾ 𝐶 ) ) |
33 |
1 8
|
fssresd |
⊢ ( 𝜑 → ( 𝑆 ↾ 𝐶 ) : 𝐶 ⟶ ( SubGrp ‘ 𝐺 ) ) |
34 |
33
|
fdmd |
⊢ ( 𝜑 → dom ( 𝑆 ↾ 𝐶 ) = 𝐶 ) |
35 |
34
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → dom ( 𝑆 ↾ 𝐶 ) = 𝐶 ) |
36 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → 𝑥 ∈ 𝐶 ) |
37 |
32 35 36
|
dprdub |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( ( 𝑆 ↾ 𝐶 ) ‘ 𝑥 ) ⊆ ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ) |
38 |
31 37
|
eqsstrrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( 𝑆 ‘ 𝑥 ) ⊆ ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ) |
39 |
4
|
lsmub1 |
⊢ ( ( ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ∈ ( SubGrp ‘ 𝐺 ) ) → ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ⊆ ( ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ⊕ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ) |
40 |
12 18 39
|
syl2anc |
⊢ ( 𝜑 → ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ⊆ ( ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ⊕ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ) |
41 |
40
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ⊆ ( ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ⊕ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ) |
42 |
38 41
|
sstrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( 𝑆 ‘ 𝑥 ) ⊆ ( ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ⊕ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ) |
43 |
|
fvres |
⊢ ( 𝑥 ∈ 𝐷 → ( ( 𝑆 ↾ 𝐷 ) ‘ 𝑥 ) = ( 𝑆 ‘ 𝑥 ) ) |
44 |
43
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( ( 𝑆 ↾ 𝐷 ) ‘ 𝑥 ) = ( 𝑆 ‘ 𝑥 ) ) |
45 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → 𝐺 dom DProd ( 𝑆 ↾ 𝐷 ) ) |
46 |
1 14
|
fssresd |
⊢ ( 𝜑 → ( 𝑆 ↾ 𝐷 ) : 𝐷 ⟶ ( SubGrp ‘ 𝐺 ) ) |
47 |
46
|
fdmd |
⊢ ( 𝜑 → dom ( 𝑆 ↾ 𝐷 ) = 𝐷 ) |
48 |
47
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → dom ( 𝑆 ↾ 𝐷 ) = 𝐷 ) |
49 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → 𝑥 ∈ 𝐷 ) |
50 |
45 48 49
|
dprdub |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( ( 𝑆 ↾ 𝐷 ) ‘ 𝑥 ) ⊆ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) |
51 |
44 50
|
eqsstrrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( 𝑆 ‘ 𝑥 ) ⊆ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) |
52 |
4
|
lsmub2 |
⊢ ( ( ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ∈ ( SubGrp ‘ 𝐺 ) ) → ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ⊆ ( ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ⊕ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ) |
53 |
12 18 52
|
syl2anc |
⊢ ( 𝜑 → ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ⊆ ( ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ⊕ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ) |
54 |
53
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ⊆ ( ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ⊕ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ) |
55 |
51 54
|
sstrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( 𝑆 ‘ 𝑥 ) ⊆ ( ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ⊕ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ) |
56 |
42 55
|
jaodan |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐶 ∨ 𝑥 ∈ 𝐷 ) ) → ( 𝑆 ‘ 𝑥 ) ⊆ ( ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ⊕ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ) |
57 |
29 56
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝑆 ‘ 𝑥 ) ⊆ ( ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ⊕ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ) |
58 |
5 6 25 57
|
dprdlub |
⊢ ( 𝜑 → ( 𝐺 DProd 𝑆 ) ⊆ ( ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ⊕ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ) |
59 |
9
|
simprd |
⊢ ( 𝜑 → ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ⊆ ( 𝐺 DProd 𝑆 ) ) |
60 |
15
|
simprd |
⊢ ( 𝜑 → ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ⊆ ( 𝐺 DProd 𝑆 ) ) |
61 |
|
dprdsubg |
⊢ ( 𝐺 dom DProd 𝑆 → ( 𝐺 DProd 𝑆 ) ∈ ( SubGrp ‘ 𝐺 ) ) |
62 |
5 61
|
syl |
⊢ ( 𝜑 → ( 𝐺 DProd 𝑆 ) ∈ ( SubGrp ‘ 𝐺 ) ) |
63 |
4
|
lsmlub |
⊢ ( ( ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝐺 DProd 𝑆 ) ∈ ( SubGrp ‘ 𝐺 ) ) → ( ( ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ⊆ ( 𝐺 DProd 𝑆 ) ∧ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ⊆ ( 𝐺 DProd 𝑆 ) ) ↔ ( ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ⊕ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ⊆ ( 𝐺 DProd 𝑆 ) ) ) |
64 |
12 18 62 63
|
syl3anc |
⊢ ( 𝜑 → ( ( ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ⊆ ( 𝐺 DProd 𝑆 ) ∧ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ⊆ ( 𝐺 DProd 𝑆 ) ) ↔ ( ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ⊕ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ⊆ ( 𝐺 DProd 𝑆 ) ) ) |
65 |
59 60 64
|
mpbi2and |
⊢ ( 𝜑 → ( ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ⊕ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ⊆ ( 𝐺 DProd 𝑆 ) ) |
66 |
58 65
|
eqssd |
⊢ ( 𝜑 → ( 𝐺 DProd 𝑆 ) = ( ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ⊕ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ) |