| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dprdsplit.2 |
⊢ ( 𝜑 → 𝑆 : 𝐼 ⟶ ( SubGrp ‘ 𝐺 ) ) |
| 2 |
|
dprdsplit.i |
⊢ ( 𝜑 → ( 𝐶 ∩ 𝐷 ) = ∅ ) |
| 3 |
|
dprdsplit.u |
⊢ ( 𝜑 → 𝐼 = ( 𝐶 ∪ 𝐷 ) ) |
| 4 |
|
dmdprdsplit.z |
⊢ 𝑍 = ( Cntz ‘ 𝐺 ) |
| 5 |
|
dmdprdsplit.0 |
⊢ 0 = ( 0g ‘ 𝐺 ) |
| 6 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐺 dom DProd 𝑆 ) → 𝐺 dom DProd 𝑆 ) |
| 7 |
1
|
fdmd |
⊢ ( 𝜑 → dom 𝑆 = 𝐼 ) |
| 8 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐺 dom DProd 𝑆 ) → dom 𝑆 = 𝐼 ) |
| 9 |
|
ssun1 |
⊢ 𝐶 ⊆ ( 𝐶 ∪ 𝐷 ) |
| 10 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐺 dom DProd 𝑆 ) → 𝐼 = ( 𝐶 ∪ 𝐷 ) ) |
| 11 |
9 10
|
sseqtrrid |
⊢ ( ( 𝜑 ∧ 𝐺 dom DProd 𝑆 ) → 𝐶 ⊆ 𝐼 ) |
| 12 |
6 8 11
|
dprdres |
⊢ ( ( 𝜑 ∧ 𝐺 dom DProd 𝑆 ) → ( 𝐺 dom DProd ( 𝑆 ↾ 𝐶 ) ∧ ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ⊆ ( 𝐺 DProd 𝑆 ) ) ) |
| 13 |
12
|
simpld |
⊢ ( ( 𝜑 ∧ 𝐺 dom DProd 𝑆 ) → 𝐺 dom DProd ( 𝑆 ↾ 𝐶 ) ) |
| 14 |
|
ssun2 |
⊢ 𝐷 ⊆ ( 𝐶 ∪ 𝐷 ) |
| 15 |
14 10
|
sseqtrrid |
⊢ ( ( 𝜑 ∧ 𝐺 dom DProd 𝑆 ) → 𝐷 ⊆ 𝐼 ) |
| 16 |
6 8 15
|
dprdres |
⊢ ( ( 𝜑 ∧ 𝐺 dom DProd 𝑆 ) → ( 𝐺 dom DProd ( 𝑆 ↾ 𝐷 ) ∧ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ⊆ ( 𝐺 DProd 𝑆 ) ) ) |
| 17 |
16
|
simpld |
⊢ ( ( 𝜑 ∧ 𝐺 dom DProd 𝑆 ) → 𝐺 dom DProd ( 𝑆 ↾ 𝐷 ) ) |
| 18 |
13 17
|
jca |
⊢ ( ( 𝜑 ∧ 𝐺 dom DProd 𝑆 ) → ( 𝐺 dom DProd ( 𝑆 ↾ 𝐶 ) ∧ 𝐺 dom DProd ( 𝑆 ↾ 𝐷 ) ) ) |
| 19 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐺 dom DProd 𝑆 ) → ( 𝐶 ∩ 𝐷 ) = ∅ ) |
| 20 |
6 8 11 15 19 4
|
dprdcntz2 |
⊢ ( ( 𝜑 ∧ 𝐺 dom DProd 𝑆 ) → ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ⊆ ( 𝑍 ‘ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ) |
| 21 |
6 8 11 15 19 5
|
dprddisj2 |
⊢ ( ( 𝜑 ∧ 𝐺 dom DProd 𝑆 ) → ( ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ∩ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) = { 0 } ) |
| 22 |
18 20 21
|
3jca |
⊢ ( ( 𝜑 ∧ 𝐺 dom DProd 𝑆 ) → ( ( 𝐺 dom DProd ( 𝑆 ↾ 𝐶 ) ∧ 𝐺 dom DProd ( 𝑆 ↾ 𝐷 ) ) ∧ ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ⊆ ( 𝑍 ‘ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ∧ ( ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ∩ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) = { 0 } ) ) |
| 23 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝐺 dom DProd ( 𝑆 ↾ 𝐶 ) ∧ 𝐺 dom DProd ( 𝑆 ↾ 𝐷 ) ) ∧ ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ⊆ ( 𝑍 ‘ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ∧ ( ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ∩ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) = { 0 } ) ) → 𝑆 : 𝐼 ⟶ ( SubGrp ‘ 𝐺 ) ) |
| 24 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝐺 dom DProd ( 𝑆 ↾ 𝐶 ) ∧ 𝐺 dom DProd ( 𝑆 ↾ 𝐷 ) ) ∧ ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ⊆ ( 𝑍 ‘ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ∧ ( ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ∩ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) = { 0 } ) ) → ( 𝐶 ∩ 𝐷 ) = ∅ ) |
| 25 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝐺 dom DProd ( 𝑆 ↾ 𝐶 ) ∧ 𝐺 dom DProd ( 𝑆 ↾ 𝐷 ) ) ∧ ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ⊆ ( 𝑍 ‘ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ∧ ( ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ∩ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) = { 0 } ) ) → 𝐼 = ( 𝐶 ∪ 𝐷 ) ) |
| 26 |
|
simpr1l |
⊢ ( ( 𝜑 ∧ ( ( 𝐺 dom DProd ( 𝑆 ↾ 𝐶 ) ∧ 𝐺 dom DProd ( 𝑆 ↾ 𝐷 ) ) ∧ ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ⊆ ( 𝑍 ‘ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ∧ ( ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ∩ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) = { 0 } ) ) → 𝐺 dom DProd ( 𝑆 ↾ 𝐶 ) ) |
| 27 |
|
simpr1r |
⊢ ( ( 𝜑 ∧ ( ( 𝐺 dom DProd ( 𝑆 ↾ 𝐶 ) ∧ 𝐺 dom DProd ( 𝑆 ↾ 𝐷 ) ) ∧ ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ⊆ ( 𝑍 ‘ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ∧ ( ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ∩ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) = { 0 } ) ) → 𝐺 dom DProd ( 𝑆 ↾ 𝐷 ) ) |
| 28 |
|
simpr2 |
⊢ ( ( 𝜑 ∧ ( ( 𝐺 dom DProd ( 𝑆 ↾ 𝐶 ) ∧ 𝐺 dom DProd ( 𝑆 ↾ 𝐷 ) ) ∧ ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ⊆ ( 𝑍 ‘ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ∧ ( ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ∩ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) = { 0 } ) ) → ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ⊆ ( 𝑍 ‘ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ) |
| 29 |
|
simpr3 |
⊢ ( ( 𝜑 ∧ ( ( 𝐺 dom DProd ( 𝑆 ↾ 𝐶 ) ∧ 𝐺 dom DProd ( 𝑆 ↾ 𝐷 ) ) ∧ ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ⊆ ( 𝑍 ‘ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ∧ ( ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ∩ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) = { 0 } ) ) → ( ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ∩ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) = { 0 } ) |
| 30 |
23 24 25 4 5 26 27 28 29
|
dmdprdsplit2 |
⊢ ( ( 𝜑 ∧ ( ( 𝐺 dom DProd ( 𝑆 ↾ 𝐶 ) ∧ 𝐺 dom DProd ( 𝑆 ↾ 𝐷 ) ) ∧ ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ⊆ ( 𝑍 ‘ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ∧ ( ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ∩ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) = { 0 } ) ) → 𝐺 dom DProd 𝑆 ) |
| 31 |
22 30
|
impbida |
⊢ ( 𝜑 → ( 𝐺 dom DProd 𝑆 ↔ ( ( 𝐺 dom DProd ( 𝑆 ↾ 𝐶 ) ∧ 𝐺 dom DProd ( 𝑆 ↾ 𝐷 ) ) ∧ ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ⊆ ( 𝑍 ‘ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ∧ ( ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ∩ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) = { 0 } ) ) ) |